

National College of Ireland

School of Computing

First Year Entrance Sample Assessment

Mathematics Sample Assessment For Different Sections

SOLUTIONS

19th, 20th and 21th August 2019

DAY 1, DAY 2 and DAY 3

All questions carry equal marks

DAY 1 (9:00 am to 5:00 pm)

Section: Probability and Statistics

Question 1:

(a) Two cards are drawn from a deck of 52 cards in such a way that the card is replaced after the first draw. Find the probabilities in the following cases:

- (i). First card is King and the second is Queen
- (ii). Both cards are faced cards, i.e., Kind, Queen and Jack.

(15 marks)

Solution (a):

Since there are 52 cards in the deck, so **n(S) = 52**

Suppose A be the event that the first card is King, then **n(A)** = 4 and Suppose B be the event that the second card is Queen, then **n(B)** = 4

- (i). Now probability P(A and B) = P(A) * P(B) = n (A) / n(S) * n(B) / n(S) = 4/52 * 4/52 = 1/169
- (ii). Suppose C be the event that first card is faced card.

Since there are 12 faced cards in the deck, therefore n(C) = 12and suppose D be the event that the second card is also faced card, then n(D) = 12

probability P(C and D) = P(C) * P(D) = n (C) / n(S) * n(D) / n(S) = 12/52 * 12/52 = 9/169

(b) Three coins are tossed, each toss resulting in a head (H) or a tail (T). Make out a sample space for the possible results and write down the probability that the coins show

(i). HHH(ii). HTH in that order(iii). 2 heads and 1 tail in any order

Solution (b):

(10 marks)

Sample space (S) = {HHH, HTT, HHT, THT, HTH, TTH, THH, TTT}

	(i).	P(HHH) HHH = 1/8
--	------	------------------

- (ii). P(HTH) HTH = 1/8
- (iii). P(2H and 1T) = 3/8

Question 2:

Over the course of a rugby competition, a record is kept of the number of penalties conceded per game. The results are presented in the following frequency distribution:

Number of Penalties Conceded	Number of Games
0	0
1	3
2	5
3	8
4	2
5	2

Calculate the standard deviation of the distribution.

Solution 2:

Number of Penalties Conceded (x)	Number of Games (fx)	x * f(x)	u	x - u	(x - u) ²	fx * (x - u) ²
0	0	0	2.75	-2.75	7.5625	0
1	3	3	2.75	-1.75	3.0625	9.1875
2	5	10	2.75	-0.75	0.5625	2.8125
3	8	24	2.75	0.25	0.0625	0.5
4	2	8	2.75	1.25	1.5625	3.125
5	2	10	2.75	2.25	5.0625	10.125
	20	55				25.75
VARIANCE = 25.75/20 = 1.28						
Standard Deviation = 1.13						

Calculator can be used for the calculation.

DAY 2 (9:00 am to 5:00 pm)

Section 2: Geometry and Trigonometry

Question 3:

(a) Find two values of $\tan(x)$ for which $\cos(x) = \frac{1}{\sqrt{2}}$, where $0^\circ < x \le 360^\circ$.

(10 marks)

Solution (a):

$$\cos(x) = \frac{1}{\sqrt{2}} \Longrightarrow x = \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) = 45^{\circ}$$

And in the 4th quadrant is

$$x = 360^{\circ} - 45^{\circ} = 315^{\circ}$$

 $\tan(45^{\circ}) = 1$
 $\tan(315^{\circ}) = -1$

Therefore, the values of tan(x) are

(b) The length of the perpendicular to a line from the origin is 5 units. The line passes through the point (3, 5). Find the equations of two such lines.

(15 marks)

Solution (b):

Point(3, 5), Slope = m

$$y - 5 = m(x - 3)$$

 $mx - y - 3m + 5 = 0$
From Origin (0, 0), |PD| is calculated as
 $|PD| = \frac{|m(0) - 1(0) - 3m + 5|}{\sqrt{m^2 + (-1)^2}} = 5$
 $|-3m + 5| = 5\sqrt{m^2 + 1}$
 $9m^2 - 30m + 25 = 25(m^2 + 1)$
 $16m^2 + 30m = 0$
 $2m(8m + 15) = 0 => m(8m + 15) = 0$
 $m = 0, m = -15/8$
Substitute the values of m into above equation $(mx - y - 3m + 5) = 0$
 $0x - y - 3 * 0 + 5 = 0$ and $-\frac{15}{8}x - y - 3(-\frac{15}{8}) + 5 = 0$
Therefore,

$$y - 5 = 0$$
 and $15x + 8y - 85 = 0$

Section 4: Number Systems

Question 4:

(a) Show that (-2 + 2i) is a root of the equation $z^3 + 3z^2 + 4z - 8 = 0$. Write the other roots. (15 marks) Solution (a):

$$-2+2i$$
 is a root of $z^3+3z^2+4z-8=0$

$$\Rightarrow (-2+2i)^{3} + 3(-2+2i)^{2} + 4(-2+2i) - 8 = 0$$

$$(-2)^{3} + 3(-2)^{2}(2i) + 3(-2)(2i)^{2} + (2i)^{3} + 3[+4+2(-2)(2i) + (2i)^{2}] - 8 + 8i - 8 = 0$$

$$-8 + 24i + 24 - 8i + 12 - 24i - 12 - 8 + 8i - 8 = 0$$

$$+ 36 - 36 = 0$$

Since the coefficients of f(z) are real \Rightarrow the conjugate -2-2i is also a root.

$$z_1 = -2 + 2i$$
$$z_2 = -2 - 2i$$

$$\Rightarrow \text{ sum of roots} = (-2+2i) + (-2-2i) = -4$$

also, the product of the roots = $(-2+2i)(-2-2i) = 4 + 4i - 4i - 4i^2$
= 8

: the quadratic formed from two roots = $z^2 + 4z + 8 = 0$

 $\therefore \qquad z^{2} + 4z + 8 \boxed{ \frac{z - 1}{z^{3} + 3z^{2} + 4z - 8} } \\ \frac{z^{3} + 4z^{2} + 8z}{-z^{2} - 4z - 8} \\ \frac{-z^{2} - 4z - 8}{-z^{2} - 4z - 8} \\ \frac{-z$

 \therefore z-1 is a factor $\Rightarrow z=1$ is the third root

(b) Solve the equation $z^2 - 2z + 2 = 0$ and express your answer in form $r(\cos\theta + i\sin\theta)$.

(10 marks)

Solution (b):

$$z^{2} - 2z + 2 = 0$$

$$a = 1, b = -2, c = 2$$

$$z = \frac{+2 \pm \sqrt{(-2)^{2} - 4(1)(2)}}{2(1)}$$

$$= \frac{2 \pm \sqrt{-4}}{2} = \frac{2 \pm 2i}{2}$$

$$= 1 \pm i$$

$$r = |z| = \sqrt{1^{2} + 1^{2}} = \sqrt{2}$$

$$\theta = \tan^{-1}\left(\frac{1}{1}\right) = 45^{\circ}\left(\frac{\pi}{4}\right) \text{ or } \left(-\frac{\pi}{4}\right)$$

$$z = r(\cos\theta + i\sin\theta) = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$

$$= \sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right)$$

DAY 3 (9:00 am to 5:00 pm)

Section 5: Algebra

Question 5:

(a) Find the point of intersection of each of the following sets of planes.

2a + b + c = 8	
5a - 3b + 2c = -	-3
7a - 3b + 3c = 1	

(15 marks)

Solution (a):

 $A: 2a+b+c=8 \implies 3A: 6a+3b+3c=24$ B: 5a - 3b + 2c = -3 B: 5a - 3b + 2c = -3C: 7a - 3b + 3c = 1 D: adding: 11a + 5c = 21also B: 5a - 3b + 2c = -3 $C: \underline{7a - 3b} + 3c = 1$ E: subtracting: -2a -c = -4. since *D*: 11a + 5c = 21and 5E:-10a - 5c = -20adding : a = 1since D:11a + 5c = 21 \Rightarrow 11(1)+5c = 21 5c = 10c = 2.also, A: 2a + b + c = 82(1) + b + 2 = 8b = 4: solution (a, b, c) = (1, 4, 2)

(b) Find the values of k if the equation $k^2x^2 + 2(k+1)x + 4 = 0$.

(10 marks)

Solution (b):

Equal Roots
$$\Rightarrow (2k+2)^2 - 4(k^2)(4) = 0$$
$$\Rightarrow 4k^2 + 8k + 4 - 16k^2 = 0$$
$$\Rightarrow 12k^2 - 8k - 4 = 0$$
$$\Rightarrow 3k^2 - 2k - 1 = 0$$
$$\Rightarrow (3k+1)(k-1) = 0$$
$$\Rightarrow k = -\frac{1}{3}, k = 1$$

Section 6: Functions

Question 6:

(a) Let $f: N \to N$ with $x \mapsto 2x$ define a function.

- (i). What is the domain of f?
- (ii). What is the range of f?
- (iii). Using the codomain and range, explain why f is not a surjective function.
- (iv). Is f a one-to-one function?
- (v). Suggest a restriction on the codomain to make f a surjective function.

(15 marks)

Solution (a):

- (i). N (Natural Numbers) = {1, 2, 3, 4,}
- (ii). Since f(x) = 2x, the range is the set of all even numbers
- (iii). Codomain and Range are not equal
- (iv). Since each value of x in f(x) corresponds to a unique value, therefore f is a one-to-one function.
- (v). Codomain should be the set of even positive numbers.

(b) Find the equation of the tangent to the curve y = lnx + x - 2 at the point where x = 1.

(10 marks)

Solution (b):

$$y = ln x + x - 2$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{x} + 1$$

where $x = 1 \Rightarrow \frac{dy}{dx} = \frac{1}{1} + 1 = 2$ (slope)
where $x = 1 \Rightarrow y = ln(1) + 1 - 2 = 0 - 1 = -1$
 \Rightarrow Point (1, -1)
 \Rightarrow Equation of Tangent: $y + 1 = 2(x - 1)$
 $\Rightarrow y + 1 = 2x - 2$
 $\Rightarrow 2x - y - 3 = 0$