National College of Ireland<br>School of Computing<br>First Year Entrance Sample Assessment<br>Mathematics Sample Assessment For Different Sections<br>SOLUTIONS<br>19th, 20th and 21th August 2019

## DAY 1, DAY 2 and DAY 3

All questions carry equal marks

## DAY 1 (9:00 am to 5:00 pm)

## Section: Probability and Statistics

## Question 1:

(a) Two cards are drawn from a deck of 52 cards in such a way that the card is replaced after the first draw. Find the probabilities in the following cases:
(i). First card is King and the second is Queen
(ii). Both cards are faced cards, i.e., Kind, Queen and Jack.
(15 marks)

## Solution (a):

Since there are 52 cards in the deck, so $\mathrm{n}(\mathbf{S})=52$
Suppose $A$ be the event that the first card is King, then $n(A)=4$ and Suppose $B$ be the event that the second card is Queen, then $n(B)=4$
(i). Now probability $P(A$ and $B)=P(A) * P(B)=n(A) / n(S) * n(B) / n(S)=4 / 52 * 4 / 52=1 / 169$
(ii). Suppose $C$ be the event that first card is faced card.

Since there are 12 faced cards in the deck, therefore $\mathrm{n}(\mathrm{C})=12$ and suppose D be the event that the second card is also faced card, then $\mathrm{n}(\mathrm{D})=12$
probability $P(C$ and $D)=P(C) * P(D)=n(C) / n(S) * n(D) / n(S)=12 / 52 * 12 / 52=9 / 169$
(b) Three coins are tossed, each toss resulting in a head $(H)$ or a tail $(T)$. Make out a sample space for the possible results and write down the probability that the coins show
(i). HHH
(ii). HTH in that order
(iii). 2 heads and 1 tail in any order

## Solution (b):

Sample space $(\mathrm{S})=\{\mathrm{HHH}, \mathrm{HTT}, \mathrm{HHT}, \mathrm{THT}, \mathrm{HTH}, \mathrm{TTH}, \mathrm{THH}, \mathrm{TTT}\}$
(i). $\mathrm{P}(\mathrm{HHH}) \mathrm{HHH}=1 / 8$
(ii). $\quad \mathrm{P}(\mathrm{HTH}) \mathrm{HTH}=1 / 8$
(iii). $\quad P(2 H$ and 1 T$)=3 / 8$

## Question 2:

Over the course of a rugby competition, a record is kept of the number of penalties conceded per game. The results are presented in the following frequency distribution:

| Number of Penalties Conceded | Number of Games |
| :---: | :---: |
| 0 | 0 |
| 1 | 3 |
| 2 | 5 |
| 3 | 8 |
| 4 | 2 |
| 5 | 2 |

Calculate the standard deviation of the distribution.

## Solution 2:

| Number of Penalties Conceded (x) | Number of Games (fx) | $x^{*} \mathrm{f}(\mathrm{x})$ | u | $\mathbf{x - u}$ | $(\mathrm{x}-\mathrm{u})^{2}$ | $\mathrm{fx} *(\mathrm{x}-\mathrm{u})^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 2.75 | -2.75 | 7.5625 | 0 |
| 1 | 3 | 3 | 2.75 | -1.75 | 3.0625 | 9.1875 |
| 2 | 5 | 10 | 2.75 | -0.75 | 0.5625 | 2.8125 |
| 3 | 8 | 24 | 2.75 | 0.25 | 0.0625 | 0.5 |
| 4 | 2 | 8 | 2.75 | 1.25 | 1.5625 | 3.125 |
| 5 | 2 | 10 | 2.75 | 2.25 | 5.0625 | 10.125 |
|  | 20 | 55 |  |  |  | 25.75 |
|  |  |  |  |  |  |  |
| VARIANCE $=25.75 / 20=1.28$ |  |  |  |  |  |  |
| Standard Deviation $=1.13$ |  |  |  |  |  |  |

Calculator can be used for the calculation.

## DAY 2 (9:00 am to 5:00 pm)

## Section 2: Geometry and Trigonometry

## Question 3:

(a) Find two values of $\tan (x)$ for which $\cos (x)=1 / \sqrt{2}$, where $0^{\circ}<x \leq 360^{\circ}$.
(10 marks)

## Solution (a):

$$
\cos (x)=1 / \sqrt{2}=>x=\cos ^{-1}(1 / \sqrt{2})=45^{\circ}
$$

And in the $4^{\text {th }}$ quadrant is

$$
x=360^{\circ}-45^{\circ}=315^{\circ}
$$

Therefore, the values of $\tan (x)$ are

$$
\begin{gathered}
\tan \left(45^{\circ}\right)=1 \\
\tan \left(315^{\circ}\right)=-1
\end{gathered}
$$

(b) The length of the perpendicular to a line from the origin is 5 units. The line passes through the point $(3,5)$. Find the equations of two such lines.
(15 marks)

## Solution (b):

$$
\begin{gathered}
\text { Point }(3,5), \quad \text { Slope }=m \\
y-5=m(x-3) \\
m x-y-3 m+5=0
\end{gathered}
$$

From Origin ( 0,0 ), |PD| is calculated as

$$
\begin{gathered}
|P D|=\frac{|m(0)-1(0)-3 m+5|}{\sqrt{m^{2}+(-1)^{2}}}=5 \\
|-3 m+5|=5 \sqrt{m^{2}+1} \\
9 m^{2}-30 m+25=25\left(m^{2}+1\right) \\
16 m^{2}+30 m=0 \\
2 m(8 m+15)=0=>m(8 m+15)=0 \\
m=0, \quad m=-15 / 8
\end{gathered}
$$

Substitute the values of $m$ into above equation ( $m x-y-3 m+5=0$ )

$$
0 x-y-3 * 0+5=0 \text { and }-\frac{15}{8} x-y-3\left(-\frac{15}{8}\right)+5=0
$$

Therefore,

$$
y-5=0 \text { and } 15 x+8 y-85=0
$$

## Section 4: Number Systems

## Question 4:

(a) Show that $(-2+2 i)$ is a root of the equation $z^{3}+3 z^{2}+4 z-8=0$. Write the other roots.
(15 marks)

## Solution (a):

$$
\begin{aligned}
& \quad-2+2 i \text { is a root of } z^{3}+3 z^{2}+4 z-8=0 \\
& \Rightarrow \quad(-2+2 i)^{3}+3(-2+2 i)^{2}+4(-2+2 i)-8=0 \\
& (-2)^{3}+3(-2)^{2}(2 i)+3(-2)(2 i)^{2}+(2 i)^{3}+3\left[+4+2(-2)(2 i)+(2 i)^{2}\right]-8+8 i-8=0 \\
& -8+24 i+24-8 \hat{i}+12-24 \hat{i}-12-8+8 \hat{i}-8=0 \\
& \quad+36-36=0
\end{aligned}
$$

Since the coefficients of $f(z)$ are real $\Rightarrow$ the conjugate $-2-2 i$ is also a root.

$$
\begin{aligned}
& z_{1}=-2+2 i \\
& z_{2}=-2-2 i \\
& \Rightarrow \text { sum of roots }=(-2+2 i)+(-2-2 i)=-4 \\
& \text { also, the product of the roots }=(-2+2 i)(-2-2 i)=4+4 \hat{i}-4 \hat{i}-4 i^{2} \\
&=8
\end{aligned}
$$

$\therefore$ the quadratic formed from two roots $=z^{2}+4 z+8=0$

$$
\therefore \quad z^{2}+4 z+8 \left\lvert\, \begin{aligned}
& z-1 \\
& \begin{array}{l}
z^{3}+3 z^{2}+4 z-8 \\
z^{3}+4 z^{2}+8 z \\
-z^{2}-4 z-8 \\
-z^{2}-4 z-8
\end{array}
\end{aligned}\right.
$$

$\therefore \quad z-1$ is a factor $\Rightarrow z=1$ is the third root
(b) Solve the equation $z^{2}-2 z+2=0$ and express your answer in form $r(\cos \theta+i \sin \theta)$.

## Solution (b):

$$
\begin{aligned}
& \begin{aligned}
& z^{2}-2 z+2=0 \\
& a=1, b=-2, c=2 \\
& z=\frac{+2 \pm \sqrt{(-2)^{2}-4(1)(2)}}{2(1)} \\
&=\frac{2 \pm \sqrt{-4}}{2}=\frac{2 \pm 2 i}{2} \\
&=1 \pm i \\
& r=|z|=\sqrt{1^{2}+1^{2}}=\sqrt{2} \\
& \theta=\tan ^{-1}\left(\frac{1}{1}\right)=45^{\circ}\left(\frac{\pi}{4}\right) \quad \text { or }\left(-\frac{\pi}{4}\right) \\
& z=r(\cos \theta+i \sin \theta)=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right) \\
&=\sqrt{2}\left(\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right)
\end{aligned}
\end{aligned}
$$



## DAY 3 (9:00 am to 5:00 pm)

## Section 5: Algebra

## Question 5:

(a) Find the point of intersection of each of the following sets of planes.

$$
\begin{aligned}
& 2 a+b+c=8 \\
& 5 a-3 b+2 c=-3 \\
& 7 a-3 b+3 c=1
\end{aligned}
$$

Solution (a):

$$
\begin{array}{rl}
A: 2 a+b+c=8 \quad & \Rightarrow \quad 3 A: 6 a+3 b+3 c=24 \\
B: 5 a-3 b+2 c=-3 & B \\
C: 7 a-3 b+3 c=1 \quad D: \text { adding }: & : 11 a+3 b+2 c=-3 \\
& \text { also } \quad B: 5 a-3 b+2 c=-3 \\
& C: \frac{7 a-3 b+3 c=1}{2 a}-c=-4 .
\end{array}
$$

since $D: 11 a+5 c=21$
and $5 E:-10 a-5 c=-20$
adding : $a=1$
since $D: 11 a+5 c=21$
$\Rightarrow \quad 11(1)+5 c=21$

$$
5 c=10
$$

$$
c=2 .
$$

also, $A: 2 a+b+c=8$

$$
\begin{aligned}
2(1)+b+2 & =8 \\
b & =4
\end{aligned}
$$

$\therefore$ solution $(a, b, c)=(1,4,2)$
(b) Find the values of k if the equation $k^{2} x^{2}+2(k+1) x+4=0$.
(10 marks)

## Solution (b):

$$
\begin{aligned}
\text { Equal Roots } & \Rightarrow(2 k+2)^{2}-4\left(k^{2}\right)(4)=0 \\
& \Rightarrow 4 k^{2}+8 k+4-16 k^{2}=0 \\
& \Rightarrow 12 k^{2}-8 k-4=0 \\
& \Rightarrow 3 k^{2}-2 k-1=0 \\
& \Rightarrow(3 k+1)(k-1)=0 \\
& \Rightarrow k=-\frac{1}{3}, k=1
\end{aligned}
$$

## Section 6: Functions

## Question 6:

(a) Let $f: N \rightarrow N$ with $x \mapsto 2 x$ define a function.
(i). What is the domain of $f$ ?
(ii). What is the range of $f$ ?
(iii). Using the codomain and range, explain why $f$ is not a surjective function.
(iv). Is $f$ a one-to-one function?
(v). Suggest a restriction on the codomain to make $f$ a surjective function.
(15 marks)

## Solution (a):

(i). $\quad N$ (Natural Numbers) $=\{1,2,3,4, \ldots \ldots\}$
(ii). Since $f(x)=2 x$, the range is the set of all even numbers
(iii). Codomain and Range are not equal
(iv). Since each value of x in $f(\mathrm{x})$ corresponds to a unique value, therefore f is a one-to-one function.
(v). Codomain should be the set of even positive numbers.
(b) Find the equation of the tangent to the curve $y=\ln x+x-2$ at the point where $x=1$.

## Solution (b):

$$
\begin{aligned}
& y=\ln x+x-2 \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{x}+1
\end{aligned}
$$

where $x=1 \Rightarrow \frac{d y}{d x}=\frac{1}{1}+1=2$ (slope)
where $x=1 \Rightarrow y=\ln (1)+1-2=0-1=-1$

$$
\Rightarrow \text { Point }(1,-1)
$$

$\Rightarrow$ Equation of Tangent: $y+1=2(x-1)$

$$
\begin{aligned}
& \Rightarrow \quad y+1=2 x-2 \\
& \Rightarrow 2 x-y-3=0
\end{aligned}
$$

