National College of Ireland

School of Computing
First Year Entrance Examination

Mathematics Qualifying Sample Examination August 2019

SOLUTIONS

Attempt ALL QUESTIONS
All questions carry equal marks

Duration of Exam: 3 hours.
Total Marks: 150
Minimum Pass Marks: 75
Attachments: NCI Undergraduate Formulae Booklet.
Note: Calculators may be used.

Section: Probability and Statistics

Question 1:

(a) A ball is drawn at random from a box containing 6 red balls, 4 white balls and 5 blue balls. Determine the probability that the ball drawn is
(i). Red
(ii). White
(iii). Blue
(iv). Not red
(v). Red or white
(15 marks)

Solution (a):

Number of Red Balls $=6$
Number of White Balls $=4$
Number of Blue Balls $=5$
Total Balls $=6+4+5=15$
(i). Probability of Red Balls $=6 / 15$
(ii). Probability of White Balls $=4 / 15$
(iii). Probability of Blue Balls $=5 / 15$
(iv). Probability of Not Red Balls $=1-6 / 15=9 / 15$
(v). Probability of Red or White Balls $=6 / 15+4 / 15=10 / 15=2 / 3$
(b) Find the probability of 4 turning up at least once in two tosses of a fair die?
(10 marks)

Solution (b):

Sample space: $6 \times 6=36$

$$
\begin{aligned}
S= & \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), \\
& (2,1),(2,2),(2,3),(2,4),(2,5),(2,6), \\
& (3,1),(3,2),(3,3),(3,4),(3,5),(3,6), \\
& (4,1),(4,2),(4,3),(4,4),(4,5),(4,6), \\
& (5,1),(5,2),(5,3),(5,4),(5,5),(5,6), \\
& (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}
\end{aligned}
$$

Event (4 turning up at least once): \{(1,4),(2,4),(3,4),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,4),(6,4)\}
Number of occurrences: 11
Probability of 4 turning up at least once in two tosses: 11/36

Question 2:

Over the course of a 20 day period, a student keeps a record of the number of phone calls that she receives per day. The results are presented in the following frequency distribution:

Number of Phone Calls Received	Number of Days
1	1
2	5
3	3
4	7
5	4

Calculate the standard deviation of the distribution.

Solution 2:

Number of Phone calls Received (x)	Number of Days (fx)	$x^{*} \mathrm{f}(\mathrm{x})$	u	$\mathbf{x - u}$	$(\mathrm{x}-\mathrm{u})^{2}$	$f \mathrm{x} *(\mathrm{x}-\mathrm{u})^{2}$
1	1	1	3.4	-2.4	5.76	5.76
2	5	10	3.4	-1.4	1.96	9.8
3	3	9	3.4	-0.4	0.16	0.48
4	7	28	3.4	0.6	0.36	2.52
5	4	20	3.4	1.6	2.56	10.24
	20	68				28.8
VARIANCE $=28.8 / 20=1.44$						
Standard Deviation $=1.2$						

$u=$ mean $=68 / 20=3.4$
Students can use calculator for the calculations.

Section 2: Geometry and Trigonometry

Question 3:

(a) Find all the values of x for which $\cos (4 x)=\sqrt{3} / 2$, where $0^{\circ}<x \leq 360^{\circ}$.

Solution (a):

$$
\begin{gathered}
\cos (4 x)=\sqrt{3} / 2=>4 x=\cos ^{-1}(\sqrt{3} / 2) \\
x=\frac{\cos ^{-1}(\sqrt{3} / 2)}{4}=\frac{15^{\circ}}{4}=3.75^{\circ}
\end{gathered}
$$

In the $4^{\text {th }}$ Quadrant, the $2^{\text {nd }}$ value is

$$
x=360^{\circ}-3.75^{\circ}=356.25^{\circ}
$$

(b) Find the equation of the perpendicular bisector of the line segment $[A B]$, where A is the point $(-14,10)$ and B is the point $(26,-22)$.
(15 marks)

Solution (b):

$(x 1, y 1)=(-14,10)$
$(x 2, y 2)=(26,-22)$

$$
\begin{gathered}
\operatorname{Mid} \operatorname{point}(M)=\left(\frac{-14+26}{2}, \frac{10-22}{2}\right) \\
\operatorname{Mid} \operatorname{point}(M)=(6,-6) \\
\operatorname{Slope}(m)=\frac{-22-10}{26-(-14)}=\frac{32}{40}=\frac{4}{5} \\
y=m x+b=>y=\left(\frac{4}{5}\right) x+b
\end{gathered}
$$

The coordinates of the Mid point $(6,-6)$ are used to calculate the equation of perpendicular bisector

$$
-6=\left(\frac{4}{5}\right) 6+b=>b=-6+\frac{24}{5}=\frac{-30+24}{5}=-\frac{6}{5}
$$

Substitute the value of b in the slope intercept form of equation $\left(y=\left(\frac{4}{5}\right) x+b\right)$ as mentioned below

$$
\begin{gathered}
y=\left(\frac{4}{5}\right) x-\frac{6}{5}=(4 x-6) / 5 \\
5 y=4 x-6 \\
4 x-5 y=6
\end{gathered}
$$

Section 4: Number Systems

Question 4:

(a) $(4+3 i)$ is one root of the equation $a z^{2}+b z+c=0$ where $a, b, c \in \mathbb{R}$, and $i^{2}=-1$. Write the other root.

Solution (a):

$$
\text { Let } z=4+3 i
$$

Complex conjugate of $z=4-3 i$
The two roots are $(4+3 i)$ and $(4-3 i)$

$$
\begin{gathered}
z^{2}+(\text { Sum of roots }) z+\text { Product of roots }=0 \\
z^{2}+(4+3 i+4-3 i) z+(4+3 i)(4-3 i)=0 \\
z^{2}+8 z+\left(16-12 i+12 i+9 i^{2}\right)=0 \\
z^{2}+8 z+(16-9)=0 \text { Where } i^{2}=-1 \\
z^{2}+8 z+7=0 \\
a=1, b=8 \text { and } c=7 \text { are all real numbers. }
\end{gathered}
$$

$(4+3 i)$ and $(4-3 i)$ are the roots of $z^{2}+8 z+7=0$.
(b) Express $z=(3+2 i)(2+2 i)$ in polar form and calculate z^{4}. Express the results both in polar and rectangular forms.
(15 marks)

Solution (b):

$$
\begin{gathered}
z=(3+2 i)(2+2 i) \\
z=6+6 i+4 i-4=2+10 i(\text { rectangular form }) \\
x=2 \text { and } y=10 \\
r=\sqrt{x^{2}+y^{2}}=\sqrt{(2)^{2}+(10)^{2}}=\sqrt{104} \\
\theta=\tan ^{-1}\left(\frac{y}{x}\right)=\tan ^{-1}\left(\frac{10}{2}\right)=78.6^{\circ} \cong 79^{\circ} \\
z=\sqrt{104}\left(\cos \left(79^{\circ}\right)+i \sin \left(79^{\circ}\right)\right)(\text { ploar form })
\end{gathered}
$$

Or

$$
\begin{gathered}
z^{4}=10816\left(\cos \left(79^{\circ}\right)+i \sin \left(79^{\circ}\right)\right)^{4} \\
z^{4}=10816\left(\cos \left(316^{\circ}\right)+i \sin \left(316^{\circ}\right)\right)
\end{gathered}
$$

Section 5: Algebra

Question 5:

(a) Solve the simultaneous equations:

$$
\begin{aligned}
& x+y+z=16 \\
& \frac{5}{2} x+y+10 z=40 \\
& 2 x+\frac{1}{2} y+4 z=21
\end{aligned}
$$

to find the values of x, y and z.

Solution (a):

$x+y+z=16$
$5 x+2 y+20 z=80$
$4 x+y+8 z=42$
Subtracting $5 \mathrm{~A}-\mathrm{B}$ Equations
$5 x+5 y+5 z=80$
(5A) Multiply A by 5
$5 x+2 y+20 z=80$
$3 y-15 z=0 \quad$ (D) $5 \mathrm{~A}-\mathrm{B}$

Subtracting 4A - C Equations
$4 x+4 y+4 z=64$
(4A) Multiply A by 4
$4 x+y+8 z=42$
(B)
$3 y-4 z=22 \quad$ (E) $4 \mathrm{~A}-\mathrm{B}$
Subtracting D - E Equations
$\begin{array}{ll}3 y-15 z=0 & \text { (D) } \\ 3 y-4 z=22 & \text { (E) } \\ ======================\end{array}$
$-11 z=-22=>z=2 \quad \mathrm{D}-\mathrm{E}$
Substitute value of z in Equation (E)
$3 y-8=22=>3 y=30=>y=10$
Substitute values of $\mathrm{y}=10$ and $\mathrm{z}=2$ in Equation (A)
$x+y+z=16=>x+10+2=16=>x=4$
Therefore, $x=4, y=10$ and $z=2$.
(b) Given the equation $x^{2}+(k-2) x+(k-3)=0$
(i). Show that the roots are real for all values of $k \in \mathbb{R}$.
(ii). Find the roots of the equation in terms of k.
(10 marks)

Solution (b):

(i) $\quad x^{2}+(k-2) x+(k-3)=0$
$b^{2}-4 a c=(k-2)^{2}-4 * 1 *(k-3)=k^{2}-4 k+4-4 k+12$
$b^{2}-4 a c=k^{2}-8 k+16=(k-4)^{2}$
For equal roots, $b^{2}-4 a c=0$
For real roots, $(k-4)^{2} \geq 0$ Which is TRUE
(ii) $\mathrm{So} \mathrm{k}=4$ is the root of the equation in terms of k .

Section: Functions

Question 6:

(a) A is the closed interval $[0,5]$. That is, $A=\{x \mid 0 \leq x \leq 5, x \in \mathbb{R}\}$. The function f is defined on by
$f: A \rightarrow \mathbb{R}$ with $x \mapsto x^{3}-5 x^{2}+3 x+5$.
(i). Find the maximum and minimum values of x.
(ii). State whether f is injective. Give a reason for your answer.

Solution (a):

(i).

$$
f(x)=x^{3}-5 x^{2}+3 x+5
$$

$$
\begin{gathered}
\text { At } x=5, f(5)=5^{3}-5 * 5^{2}+3 * 5+5=125-125+15+5 \\
f(0)=20 \text { at maximum value of } x=5
\end{gathered}
$$

$$
\begin{aligned}
& \text { At } x=0, f(0)=0^{3}-5 * 0^{2}+3 * 0+5=5 \\
& f(0)=5 \text { at minimum value of } x=0
\end{aligned}
$$

(ii).

$$
\begin{gathered}
y=f(0)=0^{3}-5 * 0^{2}+3 * 0+5 \Rightarrow>y=f(0)=5 \text { at } x=0 \\
y=f(1)=1^{3}-5 * 1^{2}+3 * 1+5 \Rightarrow>y=f(1)=4 \text { at } x=1 \\
y=f(2)=2^{3}-5 * 2^{2}+3 * 2+5 \Rightarrow>y=f(2)=-1 \text { at } x=2 \\
y=f(3)=3^{3}-5 * 3^{2}+3 * 3+5 \Rightarrow y=f(3)=-4 \text { at } x=3 \\
y=f(4)=4^{3}-5 * 4^{2}+3 * 4+5 \Rightarrow y=f(4)=-1 \text { at } x=4 \\
y=f(5)=5^{3}-5 * 5^{2}+3 * 5+5 \Rightarrow>y=f(5)=20 \text { at } x=5
\end{gathered}
$$

The ordered pairs (x, y) are obtained based on x values as $(0,5),(1,4),(2,-1),(3,-4),(4,-1),(5,20)$

This is not an injective function as more than one element of x maps to the same element (-1).
(b) The equation of a circle is $x^{2}+y^{2}=20$. Find $\frac{d y}{d x}$ and hence find the slope of the tangent to the circle at the point $(2,4)$.
(10 marks)

Solution (b):

$$
\begin{gathered}
x^{2}+y^{2}=20=>y^{2}=20-x^{2}=>y=\sqrt{20-x^{2}} \\
2 y \frac{d y}{d x}=0-2 x=>y \frac{d y}{d x}=-x=>\frac{d y}{d x}=-\frac{x}{y} \\
=>\frac{d y}{d x}=-\frac{x}{\sqrt{20-x^{2}}}
\end{gathered}
$$

Slope at $x=2$ is

$$
\frac{d y}{d x}=-\frac{2}{\sqrt{20-4}}=-\frac{2}{4}=-\frac{1}{2}
$$

