Mindfulness Practice and Older Adults' Cognitive Function and Sleep Quality

Colm Lannon-Boran, PhD candidate

Supervisors: Dr Michelle Kelly, Dr Joanna McHugh Power, Dr Caoimhe Hannigan

Brief Review of Literature

Key: cognitive function=CF, mindfulness-based intervention=MBI, sleep quality=SQ, randomized controlled trial=RCT, subjective cognitive decline=SCD, mild cognitive impairment=MCI

- Cross-sectional findings indicate better brain health in older long-term meditators than older nonmeditators (Chetelat et al., 2017; Luders et al., 2016)
- Mixed findings in experimental/RCT studies. Why?
 - Not enough focus on specific levels of cognitive function/decline of older participants (cog. healthy, SCD, MCI, dementia).
 - Differences in the MBI being used (length of time, types of meditation taught).
 - Controls that may not isolate mindfulness.

More rigorous methods called for, more consistency needed across studies.

Some promising findings:

- ❖ Wells et al. (2013):
 - Pilot RCT of older adults with MCI, n=14. MBSR compared to TAU.
 - MBSR may reduce hippocampal atrophy and improve functional connectivity in the same areas of the brain most sensitive to MCI and Alzheimer's.
- Quintana-Hernandez et al. (2016):
 - 2-year longitudinal study, n=120. Older adults with Alzheimer's on donepezil. MBI group, CST group, PMR group, and donepezil only control group.
 - MBI outperformed other groups in terms of cognitive function maintenance from 6 months.
- ❖ Sevinc et al. (2021):
 - RCT (n=146), compared MBI to a cognitive fitness programme in cognitively healthy older adults.
 - MBI improved cog. performance and strengthened connectivity within the default mode network, which is particularly vulnerable to aging affects, while control did not.

Rationale

Dementia Statistics in Ireland

Estimated number and projected growth in the number of people with dementia in Ireland by age group, 2011-2046

Age group	2011	2016	2021	2026	2031	2036	2041	2046
30-59	2,866	2,935	2,934	2,869	2,854	2,864	2,889	2,991
60-64	1,200	1,301	1,449	1,615	1,738	1,906	2,044	1,896
65-69	2,776	3,287	3,827	4,020	4,485	4,876	5,315	5,645
70-74	4,604	5,532	7,013	7,442	8,367	9,378	10,211	11,188
75-79	7,475	8,213	11,298	12,560	14,055	15,928	17,968	19,692
80-84	10,958	12,265	16,099	17,868	22,348	25,364	29,102	33,196
85+	17,970	21,260	25,595	31,085	40,195	52,512	64,654	77,549
Total	47,849	54,793	68,216	77,460	94,042	112,828	132,182	152,157

- ➤ Estimated that the average annual cost per person with dementia in Ireland is €40,500.
- Value of informal care for those with dementia is estimated to be €807 million per annum.

The Irish National Dementia Strategy, 2014 (updated 2020)

As per previous findings, mindfulness practice may be a cost-effective method of combatting agerelated cognitive decline and reducing risk of dementia.

Aims & Objectives

Aim: to investigate whether practicing mindfulness can improve or maintain cognitive function and sleep quality in older adults.

Objectives

- Review and evaluate extant literature on mindfulness, CF, and SQ in older adults (literature review).
- Investigate the effect MBI has on CF and/or SQ in cognitively healthy older adults (systematic review and meta-analysis).
- Analyse relationships between mindfulness, CF, and SQ in older adults with SCD from RCT dataset (structural equation modelling).
- Conduct an RCT or group comparison study informed by the above.

What's been done:

- Literature review 1st draft completed; 2nd draft nearing completion.
- Systematic review protocol published by Prospero, databases searched, articles selected, data extracted, introduction, methods, risk of bias analysis, (qualitative) results written up.

Current stage of project:

- Meta-analysis and write-up in progress and nearing completion.
- Data request for next chapter submitted.

What's next:

Secondary analysis of RCT data.

Current stage

Systematic Review & Meta-analysis

The review aims to answer three research questions:

- 1. What is the effect of MBI on cognitive function in cognitively unimpaired older adults?
- 2. What is the effect of MBI on sleep quality in cognitively unimpaired older adults?
- 3. Is the relationship between mindfulness and cognitive function mediated by sleep quality?

Study Selection Criteria

- Studies must have used MBSR, MBCT, or an MBI closely based on MBSR.
- Mean age >60, age range no lower than 55.
- Studies excluded if participants were cognitively impaired.
- Must be RCT and have min. ten participants per condition.
- Must take measures of cognitive function and/or sleep quality.
- Published after 2010.

Results

Mindfulness & CF

- 1. Mallya & Fiocco (2016): n=97.
 Reading & relaxation control.
 No sig. difference between groups in CF after intervention.
- 2. <u>Bubb (2014):</u> n=70. Mind aerobics control. No sig. difference between groups in CF after intervention.
- 3. Smart et al. (2016): n=36.
 Psychoeducation control. MBI group showed unique improvement in attention stability.
- 4. Moynihan et al. (2013): n=201. Waitlist control. MBI group showed sig. improvement in executive function.

Mindfulness & SQ

- 1. Black et al. (2015): n=49. Sleep Hygiene Education control. MBI showed sig. improvement compared to control in SQ.
- 2. Gallegos et al. (2016): n=200. Waitlist control. MBI had a sig. effect on SQ.

Mindfulness, CF & SQ

1. Sevinc et al. (2021): n=146. Cognitive fitness training control. MBI sig. improved cognitive outcomes

Current stage: conducting metaanalysis where possible with available data.

Meta-analysis results

Sleep quality:

Executive function:

Study	Total	Expe Mean	rimental SD		Mean	Control SD	Me	an Differe	nce	MD	95%-CI	Weight (common)	•
Mallya EF 2016 Bubb EF 2014 Sevinc EF 2021	57 15 70	-3.08	21.0791 87.3858 13.0115	17	14.80	21.0791 87.3858 13.0115		- 1		-17.88	[-4.75; 12.29] [-78.55; 42.79] [-4.34; 4.14]	19.8% 0.4% 79.9%	19.8% 0.4% 79.9%
Common effect model Random effects model Heterogeneity: $I^2 = 0\%$, τ^2		0.61		132			-50	0	50		[-3.19; 4.38] [-3.19; 4.38]	100.0%	 100.0%

Delayed recall:

Study	Total	Experin Mean		Total	Mean	Control SD		Mean	Differ	ence		MD	95%-CI	Weight (common)	_
Mallya & Fiocco delayed recall (2016) Bubb delayed recall (2014)	57 15	-0.23 4 0.69 7		40 17		4.9334 7.0228		_		-			[-2.72; 1.26] [-4.60; 5.16]	44.3% 7.4%	44.3% 7.4%
Sevinc et al. delayed recall (2021)	70	1.60 5	5.8694	75	2.40	5.8694		_	•			-0.80	[-2.71; 1.11]	48.2%	48.2%
Common effect model Random effects model Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 0.92$	142			132				=======================================					[-2.02; 0.64] [-2.02; 0.64]		100.0%
							-4	-2	0	2	4				

What's next

Secondary Analysis of the Medit-Ageing SCD-Well Dataset

Could not address research question three from systematic review.

- The SCD-Well is a multicenter, observer-blinded, RCT which is part of the Horizon 2020 European Union-funded "Medit-Ageing" project.
- 160 participants with SCD underwent 8-week MBI or a health education control.
- Measures of subjective cognition, objective cognition, mindfulness, and sleep quality taken at baseline, postintervention, and 6-month follow-up.

Preliminary Model

- ***** Literature Review.
- Systematic Review and meta-analysis.
- ❖ Secondary analysis of dataset (Medit-Ageing SCD-Well, Silver Sante Study).

Collectively, these will inform a MBI adapted to suit older individuals and target age-related cognitive decline.

Thank You

References

- Chételat, G., Mézenge, F., Tomadesso, C., Landeau, B., Arenaza-Urquijo, E., Rauchs, G., André, C., De Flores, R., Egret, S., Gonneaud, J., Poisnel, G., Chocat, A., Quillard, A., Desgranges, B., Bloch, J.-G., Ricard, M., & Lutz, A. (2017). Reduced age-associated brain changes in expert meditators: a multimodal neuroimaging pilot study. *Scientific Reports*, 7(1). https://doi.org/10.1038/s41598-017-07764-x
- Heutz, R. A. M. (2017). Can Mindfulness Beat Alzheimer's Disease? *The Maastricht Journal of Liberal Arts*, 9, 33-48. https://doi.org/10.26481/mjla.2017.v9.453
- Luders, E., Cherbuin, N., & Gaser, C. (2016). Estimating brain age using high-resolution pattern recognition: Younger brains in long-term meditation practitioners. *Neuroimage*, 134, 508–513. https://doi.org/10.1016/j.neuroimage.2016.04.007
- Quintana-Hernández, D. J., Miró-Barrachina, M. T., Ibáñez-Fernández, I. J., Pino, A. S., Quintana-Montesdeoca, M. P., Rodríguez-de Vera, B., ... Bravo-Caraduje, N. (2016). Mindfulness in the Maintenance of Cognitive Capacities in Alzheimer's Disease: A Randomized Clinical Trial. *Journal of Alzheimer's Disease*, 50(1), 217–232. doi:10.3233/jad-143009
- Sevinc, G., Rusche, J., Wong, B., Datta, T., Kaufman, R., Gutz, S. E., Schneider, M., Todorova, N., Gaser, C., Thomalla, G., Rentz, D., Dickerson, B. D., & Lazar, S. W. (2021). Mindfulness Training Improves Cognition and Strengthens Intrinsic Connectivity Between the Hippocampus and Posteromedial Cortex in Healthy Older Adults. *Frontiers in aging neuroscience*, 13, 702796. https://doi.org/10.3389/fnagi.2021.702796
- Wells, R. E., Yeh, G. Y., Kerr, C. E., Wolkin, J., Davis, R. B., Tan, Y., Spaeth, R., Wall, R. B., Walsh, J., Kaptchuk, T. J., Press, D., Phillips, R. S., & Kong, J. (2013). Meditation's impact on default mode network and hippocampus in mild cognitive impairment: A pilot study. *Neuroscience Letters*, *556*, 15–19. https://doi.org/10.1016/j.neulet.2013.10.001