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Background

A lot of this presentation is based on:

[CH24]: Simon Caton and Christian Haas. Fairness in Machine Learning: A Survey. ACM

Computing Surveys, Vol. 56 (7). 2024. Open Access Link

It was written as an entry point to the area for researchers and
practitioners not familiar with Fairness in Machine Learning.
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https://dl.acm.org/doi/10.1145/3616865


Fairness in Machine Learning / AI — Why?
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Why? AI-driven Recidivism Risk Calculations

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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Why? AI-based Judgement

https://www.theguardian.com/technology/2016/sep/08/artificial-intelligence-beauty-contest-doesnt-like-black-people
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Why We Should Care

Machine Learning (ML) and AI are being used A LOT in scenarios
that involve people.

It’s easy to (un)intentionally learn from the “wrong parts” of the
data.
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Then what is “fair”?

Decision makers may not be able to define what it means to be
“fair” but they may recognize “unfairness” when they see it
[GJ+18].

Your personal definition is likely rooted in your own world view
(sociocultural norms, political view point, religion etc.) and
demographics (see e.g.: [Pie17]).

This makes fairness very hard to define universally.
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Fairness in ML / AI — How?
→ Measurement and Intervention
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Measuring Fairness: Sensitive Variables (I)
Sensitive Variable: any data (or feature of the data) that refers or
relates to humans [BHN19].

Specific legal frameworks also provide concrete sets.

Some are very obvious

age, gender, race, marital status, sexuality, religion . . .

Others are not; they are correlated with sensitive variables.
These are proxy-sensitive variables (or proxies or quasi-identifiers).
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Measuring Fairness: Sensitive Variables (II)
Sensitive Variable Example Proxies
Gender Education Level, Income, Occupation, Felony Data, Keywords in User

Generated Content (e.g. CV, Social Media etc.), University Faculty,
Working Hours

Marital Status Education Level, Income
Race Felony Data, Keywords in User Generated Content (e.g. CV, Social

Media etc.), Zipcode
Disabilities Personality Test Data (inferrable from social media posts)
Immigration Status Social Media Posts

See: [BC+17, p. 1014], and [FRD18, Ber19, SHS19, BC+17, Sel17,
HC17, Yar10, SE+13, WD14, MD93, KYJ+23]

Fairness in Machine Learning – NCI Research Day 2025 10



Measuring Fairness: (Un)privileged Groups

Using some set of sensitive variables, we can define:

• Privileged Group(s): disproportionately more likely to be
positively classified (handled)

• Unprivileged Group(s): disproportionately less likely to be
positively classified (handled)

Deriving a Fairness Metric

Sensitive Variable(s) + (Un)privileged Group(s) → Fairness Metric
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Measuring Fairness: Metrics (there are lots!)

Group-based Fairness Individual and Coun-
terfactual Fairness

Parity-based Metrics Confusion Matrix-
based Metrics

Calibration-based Met-
rics

Score-based Metrics Distribution-based
Metrics

Concept Compare predicted
positive rates across
groups

Compare groups by
taking into account
potential underlying
differences between
groups

Compare based on pre-
dicted probability rates
(scores)

Compare based on ex-
pected scores

Calculate distributions
based on individual
classification out-
comes

Abstract
Criterion

Independence Separation Sufficiency - -

Examples Statistical Parity, Dis-
parate Impact

Accuracy equality,
Equalized Odds, Equal
Opportunity

Test fairness, Well cal-
ibration

Balance for positive
and negative class,
Bayesian Fairness

Counterfactual Fair-
ness, Generalized
Entropy Index

Can you spot the dilemma of being able to “measure” something?
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Implications of Measurement

Being able to mathematically define fairness is key to technical
approaches and interventions.

BUT the idea of measurement can be precarious as it implies:

• a straightforward process [BHN19], which it isn’t

• responsible use, which it might not be (see EU AI Act)
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Being “fair” is not doing whatever we did last
time
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Doing “something” is easy, but... (I)

• this is is going to be hard

• doing “something” might be worse than doing nothing

• expect performance (e.g. accuracy) to worsen (this might be
the desired outcome)

Suppose

Simon went away to “look at” the data. Wait! There’s a gender
variable, I’ll remove it! Situation resolved, right!?
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Doing “something” is easy, but... (II)
Variable omission (or blinding) has been shown to amplify biases in
the data (see: [CW+17, KC12, DH+12]) because of proxy variables.

Many seemingly obvious approaches to improving model fairness
can actually make things worse depending on your perspective(s).

Standard Fairness Methodology

Technical interventions at different parts of the pipeline.
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Technical Interventions in the ML Pipeline

The survey covers 11 different characterizations of intervention.
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Example: Regularization → In-Processing

We modify the optimisation function of the model: add a penalty
term that regularises the model w.r.t. to (un)fair outcomes.

This punishes the model for “poor” scores in the fairness metric
during training.

This is a fairly common approach in making models fair(er).
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Example: Fairness Regularization in Quantum ML

Quantum ML Models can
also be unfair [BHC25].

Blue: with quantum noise
Green: without
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Example: Fairness vs. Accuracy Trade-off
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Fairness in ML / AI — What’s to come?
→ (Mean) Questions & Diversification

Fairness in Machine Learning – NCI Research Day 2025 21



Standard Challenges

• Improving fairness often detriments accuracy
[BH+18, DH+12, CDP+17, HP+16, Zli15, CW+17, Haa19].

• One fairness measure often detriments another [KL+18, Cho17].

• The choice of fairness measure(s) itself may even harbor,
disguise, or create new underlying ethical concerns.

• Some interventions are at odds with legislation due to
transformations on the data and/or model output(s).
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(Mean) Starter Questions for “Experts”

• What experience do they have with fairness in machine learning?

• Can they define fairness (if so they might be bluffing!)

• Are they worried about how to do it? (they should be!)

• Do they have a social scientist or policy person on the team?

• Do they understand the data flows and the underlying
(business) objectives?
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Supporting Practitioners

ML is very accessible: so unfair practices are easier and easier to
(un)intentionally arise.

A nice python library is IBM’s AIF360 [BD+18]

Your pre-processing is really important, e.g. [CMH22]

Interventions for diverse tasks: regression ([KT+18]), reinforcement
learning [GS+22], quantum classifiers [BHC25], LLMs . . .

More details in the survey paper!
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Final Remarks

Think very carefully what fairness means for you!

Go beyond race, gender, and age; especially into proxy-variables

Be diverse in the data you use

Go beyond making the model “fair” – look at other parts of the
data analytical process too

Regardless of fairness, is your application ethically appropriate?

Sometimes it’s just better to collect more data.
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