

Research Day NCI

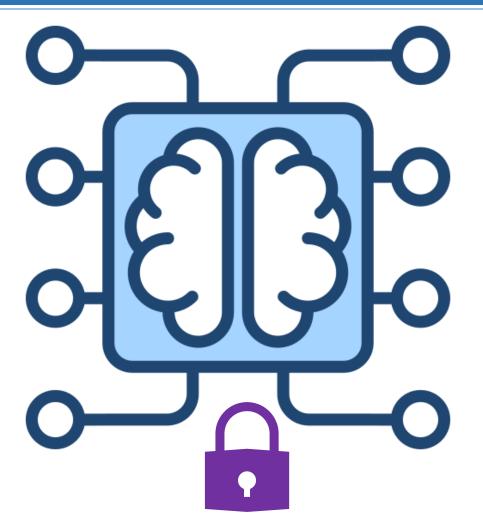
Privacy-Preserving Logistic Regression for Federated Learning Environments with a Policy to Reduce the Training Time

Jorge M. Cortés-Mendoza Postdoctoral researcher Cloud Competency Centre, NCI

Dublin, June 2025

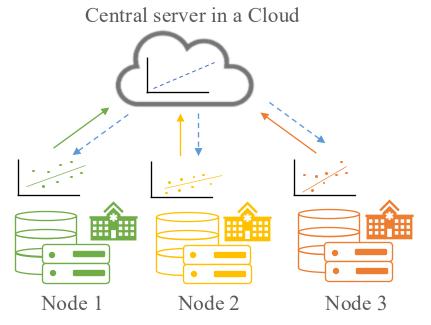
Content

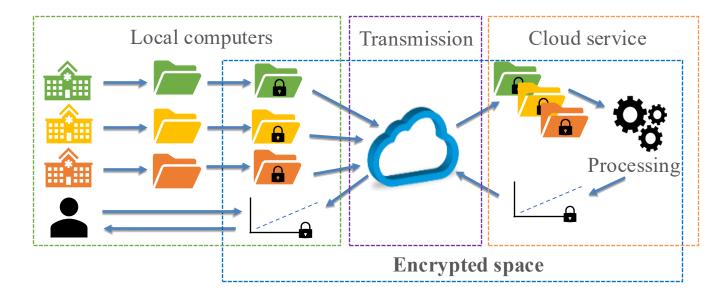
- Motivation
- Logistic Regression (LR)
- Related Work
- Training Policy
- Experimental Evaluation
- Conclusions



Motivation

Federated Learning (FL) and *Homomorphic Encryption (HE)* are two main directions *to provide security* and *privacy preservation* by addressing vulnerabilities in *data processing*





- **Fig 1.** FL system with a central node in a cloud environment and three nodes
- **Fig 2**. Cloud environment with HE can protect the entire data lifecycle (transmission, storage, and processing)

Logistic Regression (LR)

Logistic Regression (LR) is a statistical method for analyzing information where:

- A dataset $X \in \mathbb{R}^d$ and their labels $Y \in \{0,1\}$ are used to *model a binary dependent variable*
- The prediction of a binary outcome considers the *logistic function*

The inference of LR considers the hypothesis $h_{\theta}(x^{(i)}) = g(\theta^T x^{(i)})$ where

- Logistic function: $g(z) = \frac{1}{1+e^{-z}}$
- Weights: $\theta^T = [\theta_0, \theta_1, \dots, \theta_d]^T$
- Data: $x^{(i)} = [1, x_1^{(i)}, x_2^{(i)}, \dots, x_d^{(i)}]^T$

The training phase of LR focuses on *finding* θ^* , the values of θ that *minimizes the number of errors* in the prediction

• θ^* is used to estimate the *binary classification* of new data

Logistic Regression (LR)

For $x' = [1, x_1, ..., x_d] \in \mathbb{R}^{d+1}$ is possible to guess its binary value $y' \in \{0, 1\}$ by $y' = \begin{cases} 1 & if h_{\theta^*}(x') \ge \tau \\ 0 & if h_{\theta^*}(x') < \tau \end{cases}$

• τ defines a variable threshold in $0 < \tau < 1$, typically with a value equal to 0.5

Gradient Descent (GD) is the optimization process to find θ^* according to the partial derivate of the cost function $J(\theta)$, represented by $\nabla_{\theta} J(\theta)$

Algorithm 1. Batch Gradient DescentInput: $X, Y, \theta, \alpha, and nIter$ Output: θ^* (the best θ)1For $i \leftarrow 1$ to nIter2 $\theta \leftarrow \theta - \alpha \times \nabla_{\theta} J(\theta, X, Y)$ 3Return θ

Related Work

There are several limitations with respect to the required *compute availability* and *privacy* of the models

Several studies have proposed *innovations* and *new approaches* to overcome the disadvantages of LR with FL and HE

HE	FL	Name	Metric	Dataset	Ref
-	*	VFLR	Accuracy (A), Area under the ROC Curve (AUC)	Pima, BCWD, BDM	[1]
-	*	SecureLR	Time	MNIST	[2]
-	*	VANE	Mean Absolute Error (MAE)	BCD, Diabetes dataset (DD), UCID	[3]
-	*	VPPLR	Precision (P), Recall (R)	DD, WIBC, DD, ACAD	[4]
*	-	-	А	MNIST, notMNIST, CIFAR-10	[5]
*	-	-	AUC	iDASH (Genomic), financial	[6]
*	-	Modified GWAS	p-values, F1-score (F1)	iDASH	[7]
*	-	-	A, AUC, K-S values	Korea Credit Bureau (KCB), MNIST	[8]
*	-	-	A, AUC	iDASH, Lbw, Mi, Nhanes3, Pcs, Uis	[9]
*	-	N-LHAE	Overhead	Not described	[10]
*	-	P2OLR, P2VCLR, CECLLR	A, AUC, F1, P, R	Mi, Nhanes3, Uis	[11-13]
*	-	-	А	Digits (scikit-learn library)	[14]

Table 1. Main characteristics of FL and HE approaches for privacy-preserving LR in the literature

We introduce *a new training policy* for FL that progressively reduces the amount of *training data* for each iteration

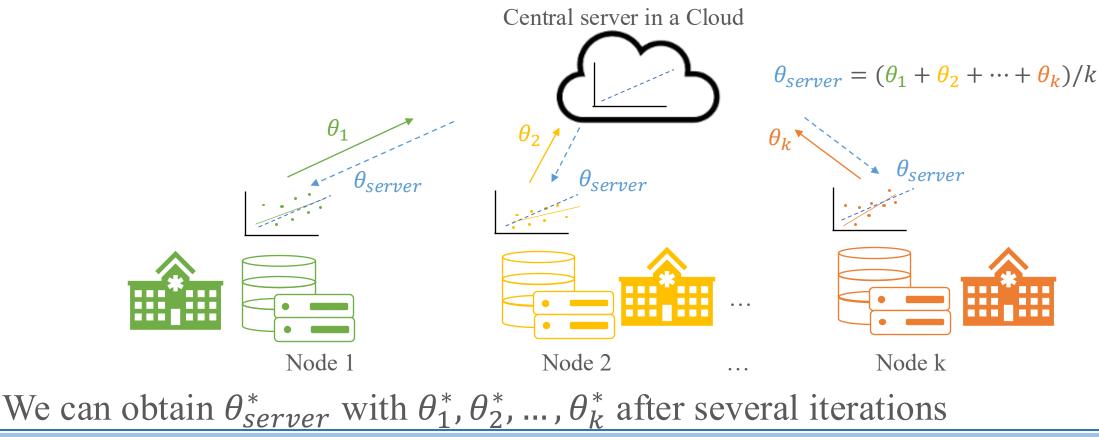
• This reduction allows to perform the *learning process faster*, effectively reducing the *training time* without significant *accuracy degradation*

Training Policies:

- 1. FL Logistic Regression with reduction policy (LR_{FLn})
- 2. FL Logistic Regression with reduction policy and weights (LR_{FLnw})
- 3. FL ensemble Logistic Regression (LR_{FLe})
- 4. FL ensemble Logistic Regression with reduction policy (LR_{FLen})

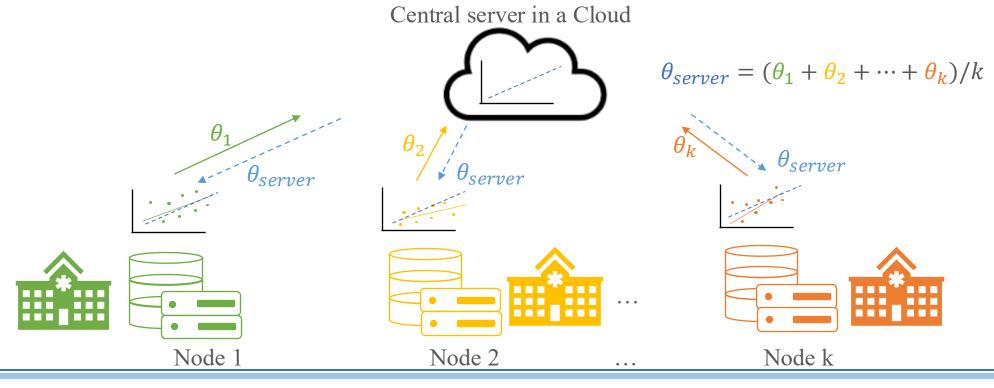
FL Logistic Regression (LR_{FL})

- Datasets are evenly distributed among the system nodes
- Each local node uses *all available local data* to train the model in each iteration



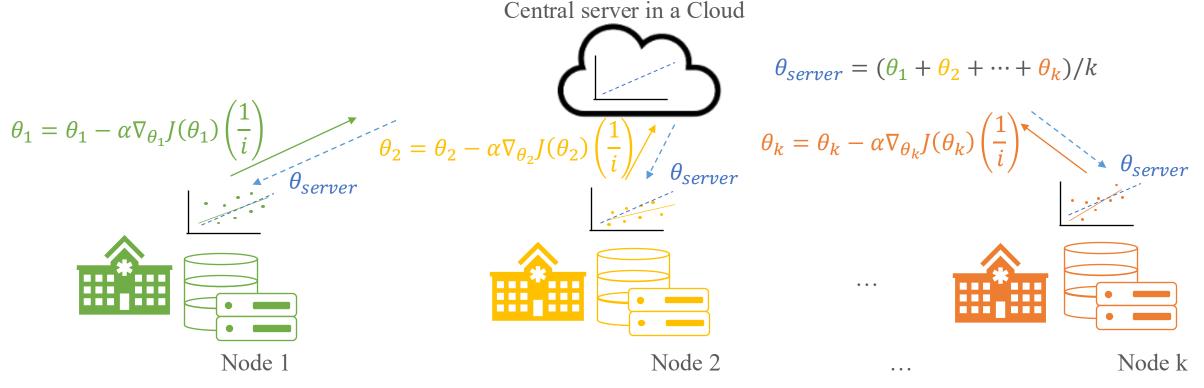
 LR_{FLn} decreases *the number of training instances* in local nodes according to 1/i ratio where *i* defines the iteration number

- Reduction: 0% the first iteration, 50% the second time, 66% the third iteration, and so on
- The *subset of training* instances is chosen *randomly* for each iteration

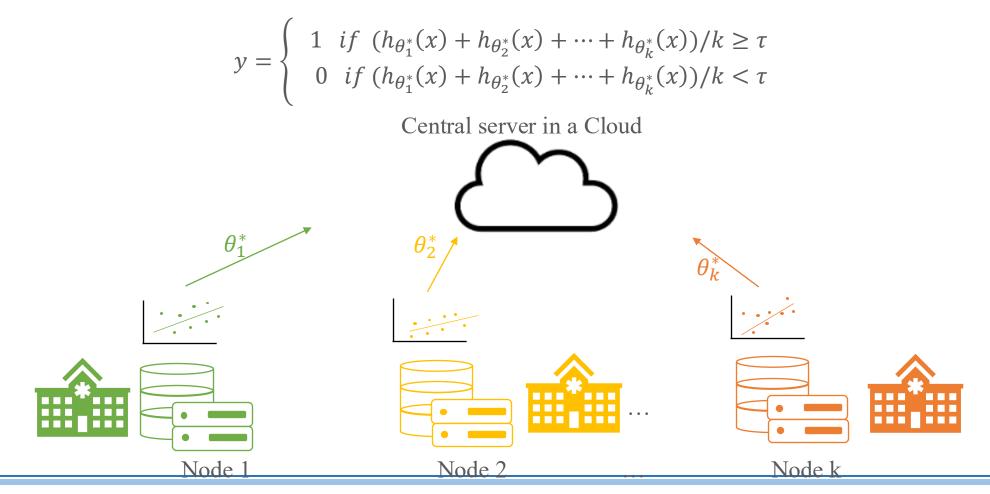


 LR_{FLnw} updates the central node *proportionally* with the number of instances from the local models

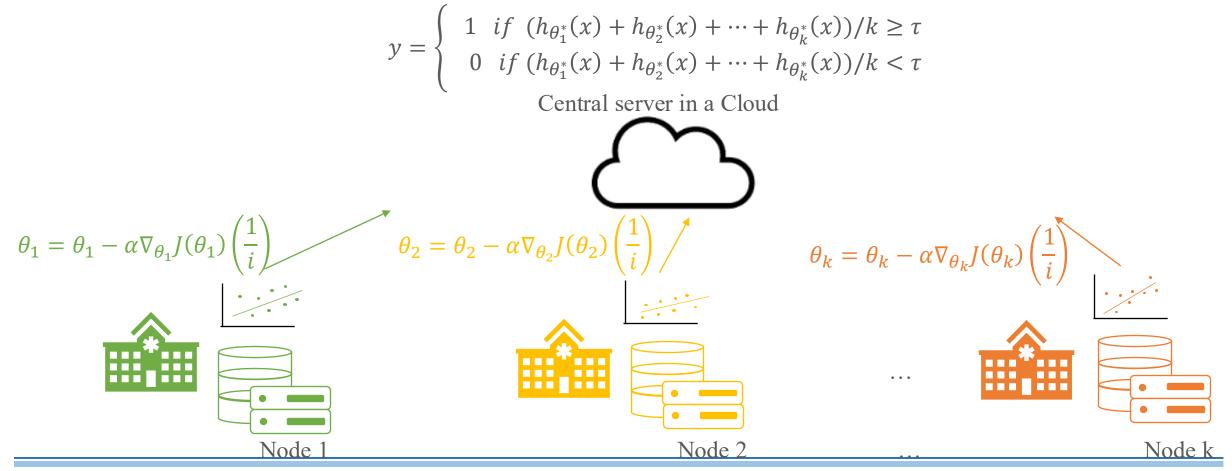
• Then, reducing the number of instances on the training dataset implies a reduced update on θ



In LR_{FLe} , the nodes use *their data to train local LR models*, and then these models are sent to *the central server* to obtain a *better predictive model*



 LR_{FLen} the nodes use their data to train local LR models, and then these models are sent to the central server to obtain a better predictive model



- We compare the performance of LR, LR_{FL} , LR_{FLn} , LR_{FLnw} , LR_{FLe} , and LR_{FLen} considering their *accuracy* (A) and *speedup*
 - Horizontal FL system
 - Constant number of nodes
 - Federated Averaging
- Six standard datasets widely used in the literature
 - Min-Max normalization
- Simple Split technique Initial configuration of LR
 - 10 learning rates (α)
 - 10 values of iterations (*nIter*)
 - 30 initial solutions (θ)

 Table 2. Characteristics and size of the datasets

Factures	Instances				
reatures	Total (N)	n-Training	n-Testing		
9	189	151	38		
9	1,253	1,002	251		
15	15,649	12,519	3,130		
9	379	303	76		
8	768	614	154		
8	575	460	115		
	9 9 15 9	9 189 9 1,253 15 15,649 9 379 8 768	Total (N) n-Training918915191,2531,0021515,64912,51993793038768614		

Table 3. Average accuracy after 30 executions with the best LR configuration for different FL environment configurations

Dataset	LR	LR _{FL}	LR _{FLn}	LR _{FLnw}	LR _{FLe}	LR _{FLen}	$dif_A(LR_{FLn})$	$dif_A(LR_{FLnw})$	$dif_A(LR_{FLe})$	$dif_A(LR_{FLen})$	Nodes
Lbw			0.6833	0.6965	0.6965	0.6842	1.32	0.0	0.0	1.23	2
			0.6877	0.6965	0.6965	0.6965	0.88	0.0	0.0	0.0	3
	0.6965	0.6965	0.6491	0.6965	0.6965	0.6684	4.74	0.0	0.0	2.81	4
			0.6518	0.6965	0.6965	0.6211	4.47	0.0	0.0	7.54	5
			0.6684	0.6965	0.6965	0.6544	2.81	0.0	0.0	4.21	6
			0.8965	0.7849	0.9046	0.8954	0.92	12.08	0.11	1.04	2
			0.8938	0.7851	0.9042	0.8918	1.20	12.06	0.15	1.39	3
Mi	0.9053	0.9057	0.8960	0.7858	0.9042	0.8926	0.97	11.99	0.15	1.31	4
			0.8908	0.7839	0.9028	0.8956	1.49	12.18	0.29	1.01	5
			0.8963	0.7851	0.9023	0.8919	0.94	12.06	0.35	1.38	6
			0.7915	0.7914	0.7915	0.7915	0.0	0.01	0.0	0.0	2
es3		0.7915	0.7914	0.7915	0.7915	0.7914	0.01	0.0	0.0	0.01	3
Nhanes3	0.7916		0.7915	0.7915	0.7915	0.7915	0.0	0.0	0.0	0.0	4
dZ -			0.7916	0.7915	0.7915	0.7916	0.0	0.01	0.0	-0.01	5
			0.7915	0.7915	0.7915	0.7915	0.0	0.01	0.0	0.0	6
	0.6667	0.6658	0.6246	0.6237	0.6654	0.6211	4.12	4.21	0.04	4.47	2
CP)			0.5908	0.6263	0.6654	0.5829	7.50	3.95	0.04	8.29	3
Pcs		0.6654	0.5728	0.6232	0.6636	0.5776	9.25	4.21	0.18	8.77	4
			0.5917	0.6189	0.6658	0.5618	7.37	4.65	-0.04	10.35	5
		0.6658	0.6114	0.6215	0.6654	0.6228	5.44	4.43	0.04	4.30	6
			0.6476	0.3463	0.6537	0.6474	0.61	30.74	0.0	0.63	2
នេ		0.6537	0.6543	0.3506	0.6537	0.6543	-0.06	30.30	0.0	-0.06	3
Pima	0.6543		0.6548	0.3500	0.6537	0.6545	-0.11	30.37	0.0	-0.09	4
			0.6535	0.3461	0.6537	0.6535	0.02	30.76	0.0	0.02	5
			0.6545	0.3496	0.6537	0.6543	-0.09	30.41	0.0	-0.06	6
Uis			0.7365	0.7365	0.7365	0.7365	0.0	0.0	0.0	0.0	2
	0.7365		0.7365	0.7365	0.7365	0.7365	0.0	0.0	0.0	0.0	3
		0.7365	0.7365	0.7365	0.7365	0.7365	0.0	0.0	0.0	0.0	4
			0.7365	0.7365	0.7365	0.7365	0.0	0.0	0.0	0.0	5
			0.7365	0.7365	0.7365	0.7365	0.0	0.0	0.0	0.0	6

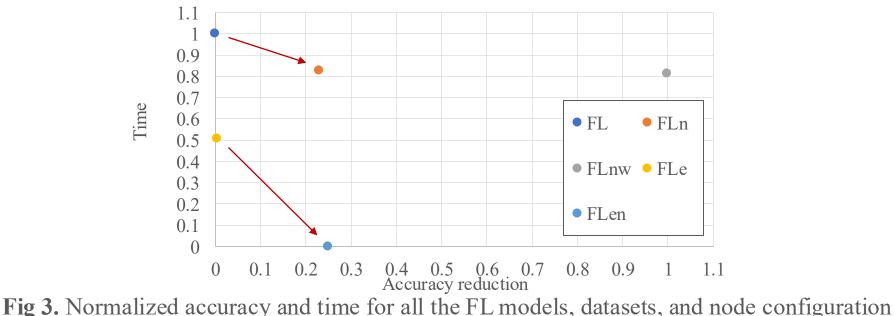
The speedup measures consider the *worst time* of all nodes in the FL environment per iteration

Dataset	LR _{FL}	LR _{FLn}	LR _{FLnw}	LR _{FLe}	LR _{FLen}	Nodes		Dataset	LR _{FL}	LR _{FLn}	LR _{FLnw}	LR _{FLe}	LR _{FLen}	Nodes
	0.91	0.91	0.92	1.20	0.99	2			1.00	1.05	1.08	1.13	1.14	2
Lbw	0.94	0.93	0.94	1.24	1.01	3		1.09	1.09	1.10	1.38	1.16	3	
	0.96	0.93	0.94	1.28	1.00	4		Pcs	1.13	1.08	1.10	1.43	1.16	4
	0.96	0.94	0.96	1.28	1.01	5			1.14	1.09	1.11	1.47	1.20	5
	0.98	0.95	0.96	1.31	1.01	6			1.15	1.10	1.12	1.46	1.21	6
	2.04	2.46	2.45	2.44	3.24	2			1.04	1.07	1.08	1.32	1.44	2
	2.40	2.56	2.58	2.85	3.36	3	Pima	1.22	1.13	1.11	1.49	1.44	3	
Mi	2.54	2.61	2.62	3.15	3.50	4		1.28	1.14	1.14	1.59	1.50	4	
	2.83	2.63	2.66	3.50	3.55	5		1.38	1.14	1.13	1.77	1.52	5	
	2.95	2.66	2.66	3.60	3.54	6			1.41	1.16	1.14	1.83	1.53	6
	1.28	2.51	2.54	1.74	4.87	2			1.08	1.00	1.00	1.33	1.32	2
	1.25	2.85	2.91	2.31	5.97	3	Uis	1.17	1.01	1.02	1.45	1.36	3	
Nhanes3	1.48	3.09	3.14	2.83	6.69	4		1.29	1.03	1.04	1.63	1.37	4	
	1.69	3.29	3.30	3.12	7.15	5		1.32	1.03	1.03	1.67	1.38	5	
	1.87	3.42	3.45	3.40	7.56	6			1.34	1.04	1.04	1.72	1.38	6

Table 4. Speedup of FL environments with respect to LR for all the datasets

The normalized values of accuracy and time

- LR_{FL} provides the maximum execution time and no reduction in accuracy
- LR_{FLe} reduces the accuracy very little with respect to the worst strategy and provides an acceleration of 50% with respect to the maximum time reduction
- LR_{FLen} has the lowest execution time and an accuracy reduction of about 25%



- We also present the time to *encrypt*, *decrypt*, and calculate the *aggregation* of the ciphertexts with the values θ_i and θ_{server}
 - CKKS scheme with a security level of 128 bits, a polynomial modulo degree at most 2¹³-1, and a moduli chain equal to {31, 26, 26, 26, 26, 26, 26, 31}[14]

	Encrypt	Average	Decrypt
Lbw	0.02409	0.00845	0.00916
Mi	0.02415	0.00838	0.00930
Nhanes3	0.03171	0.01085	0.01230
Pcs	0.02415	0.00796	0.00959
Pima	0.02469	0.00839	0.00937
Uis	0.02612	0.00906	0.00986

Table 5. Average time of HE operations (sec)

We analyze the latest advances in privacy-preserving LR solutions for processing confidential data using FL and HE

- We present the characteristics of the most recent approaches in the field: algorithms, evaluation metrics, used datasets, implementation characteristics, etc.
- We proposed one policy to reduce the training time of the federated model and conduct a comprehensive simulation analysis on the six datasets from medicine (diabetes, cancer, drugs, etc.) and genomics
- The results show that the proposed policies can reduce the training time with a slight reduction in the final accuracy of the model

Questions ?

References

- 1. D. He, R. Du, S. Zhu, M. Zhang, K. Liang, and S. Chan, "Secure logistic regression for vertical federated learning," IEEE Internet Computing, 26(2), 61-68, 2021
- 2. F. Wang, H. Zhu, R. Lu, Y. Zheng, and H. Li, "A privacy-preserving and non-interactive federated learning scheme for regression training with gradient descent," Information Sciences, 552, 183-200, 2021
- 3. Y. Zhang, and M. Tang, "VPPLR: Privacy-preserving logistic regression on vertically partitioned data using vectorization sharing," Journal of Information Security and Applications, 82, 2024
- 4. C. Bonte, and F. Vercauteren, "Privacy-preserving logistic regression training," BMC medical genomics, vol. 11, pp. 13–21, 2018
- 5. K. Edemacu and J. W. Kim, "Multi-party privacy-preserving logistic regression with poor quality data filtering for IoT contributors," Electronics, vol. 10, no. 17, p. 2049, 2021
- 6. D. Kim, Y. Son, D. Kim, A. Kim, S. Hong, and J. H. Cheon, "Privacy-preserving approximate GWAS computation based on homomorphic encryption," BMC Medical Genomics, vol. 13, no. 7, pp. 1–12, 2020
- 7. K. Han, S. Hong, J. H. Cheon, and D. Park, "Logistic regression on homomorphic encrypted data at scale," in AAAI-19, vol. 33, (Honolulu), pp. 9466–9471, Feb. 2019
- 8. J. Chiang, "Privacy-preserving logistic regression training with a faster gradient variant," arXiv preprint arXiv:2201.10838, 2022
- 9. Y. Zhou, L. Song, Y. Liu, P. Vijayakumar, B. B. Gupta, W. Alhalabi, and H. Alsharif, "A privacy-preserving logistic regression-based diagnosis scheme for digital healthcare," Future Generation Computer Systems, vol. 144, pp. 63–73, 2023
- 10.X. Yu, W. Zhao, Y. Huang, J. Ren, and D., Tang, "Privacy-preserving outsourced logistic regression on encrypted data from homomorphic encryption," Security and Communication Networks, no. Article ID 1321198, 2022
- 11.X. Yu, W. Zhao, D. Tang, and K. Liang, "Privacy-preserving vertical collaborative logistic regression without trusted third-party coordinator," Security and Communication Networks, no. Article ID 5094830, 2022

References

- 12. X. Yu, D. Tang, and W. Zhao, "Privacy-preserving cloud-edge collaborative learning without trusted third-party coordinator," Journal of Cloud Computing, vol. 12, no. 1, pp. 1–11, 2023
- 13.C. Liu, Z. L. Jiang, X. Zhao, et al., "Efficient and privacy-preserving logistic regression scheme based on leveled fully homomorphic encryption," in INFOCOM 2022, (New York), pp. 1–6, IEEE, May 2022
- 14.M. Albrecht, M. Chase, H. Chen, et al., "Homomorphic encryption standard," in Protecting Privacy through Homomorphic Encryption, (K. Lauter, W. Dai, and K. Laine, eds.), ch. Part II, pp. 31–62, Cham: Springer, 2021. ISBN 978-3-030-77286-4, DOI: 10.1007/978-3-030-77287-1_2