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Federated Learning (FL) and Homomorphic Encryption (HE) are two main 
directions to provide security and privacy preservation by addressing 

vulnerabilities in data processing 
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Logistic Regression (LR)
Logistic Regression (LR) is a statistical method for analyzing information where:
• A dataset 𝑋 ∈ ℝ𝑑 and their labels 𝑌 ∈ 0,1  are used to model a binary dependent 

variable

• The prediction of a binary outcome considers the logistic function

The inference of LR considers the hypothesis ℎθ 𝑥 𝑖 = 𝑔 θ𝑇𝑥 𝑖  where

• Logistic function: 𝑔 𝑧 =
1

1+𝑒−𝑧 

• Weights: θ𝑇 = 𝜃0, 𝜃1, … , 𝜃𝑑
𝑇

• Data: 𝑥 𝑖 = [1, 𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑑
𝑖 ] 𝑇

The training phase of LR focuses on finding 𝜽∗, the values of 𝜃 that minimizes 
the number of errors in the prediction
• 𝜃∗ is used to estimate the binary classification of new data
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Logistic Regression (LR)
For 𝑥′ = [1, 𝑥1, … , 𝑥𝑑] ∈ ℝ𝑑+1 is possible to guess its binary value 𝑦′ ∈ {0,1} by 

𝑦′ = ቊ
 1 𝑖𝑓 ℎθ∗ 𝑥′ ≥ 𝜏 

0 𝑖𝑓 ℎθ∗ 𝑥′ < 𝜏

• 𝜏 defines a variable threshold in 0 < 𝜏 < 1, typically with a value equal to 0.5

Gradient Descent (GD) is the optimization process to find 𝜃∗ according to the 
partial derivate of the cost function 𝐽(𝜃), represented by 𝛻𝜃𝐽 𝜃
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Algorithm 1. Batch Gradient Descent

Input: 𝑋, 𝑌, 𝜃, 𝛼, 𝑎𝑛𝑑 𝑛𝐼𝑡𝑒𝑟
Output: 𝜃∗ (the best 𝜃)

1 For 𝑖 ← 1 to 𝑛𝐼𝑡𝑒𝑟
2 𝜃 ←  𝜃 − 𝛼×𝛻𝜃𝐽(𝜃, 𝑋, 𝑌)
3 Return 𝜃
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Related Work
There are several limitations with respect to the required compute availability 

and privacy of the models

Several studies have proposed innovations and new approaches to overcome the 
disadvantages of LR with FL and HE
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HE FL Name Metric Dataset Ref

- * VFLR Accuracy (A), Area under the ROC Curve (AUC) Pima, BCWD, BDM [1]

- * SecureLR Time MNIST [2]

- * VANE Mean Absolute Error (MAE) BCD, Diabetes dataset (DD), UCID [3]

- * VPPLR Precision (P), Recall (R) DD, WIBC, DD, ACAD [4]

* - - A MNIST, notMNIST, CIFAR-10 [5]

* - - AUC iDASH (Genomic), financial [6]

* - Modified GWAS p-values, F1-score (F1) iDASH [7]

* - - A, AUC, K-S values Korea Credit Bureau (KCB), MNIST [8]

* - - A, AUC iDASH, Lbw, Mi, Nhanes3, Pcs, Uis [9]

* - N-LHAE Overhead Not described [10]

* - P2OLR, P2VCLR, CECLLR A, AUC, F1, P, R Mi, Nhanes3, Uis [11-13]

* - - A Digits (scikit-learn library) [14]

Table 1. Main characteristics of FL and HE approaches for privacy-preserving LR in the literature
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Training Policy

We introduce a new training policy for FL that progressively reduces the amount 
of training data for each iteration

• This reduction allows to perform the learning process faster, effectively reducing the 
training time without significant accuracy degradation

Training Policies:

1. FL Logistic Regression with reduction policy (𝐿𝑅𝐹𝐿𝑛)

2. FL Logistic Regression with reduction policy and weights (𝐿𝑅𝐹𝐿𝑛𝑤)

3. FL ensemble Logistic Regression (𝐿𝑅𝐹𝐿𝑒)

4. FL ensemble Logistic Regression with reduction policy (𝐿𝑅𝐹𝐿𝑒𝑛)
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Training Policy
FL Logistic Regression (𝐿𝑅𝐹𝐿)

• Datasets are evenly distributed among the system nodes

• Each local node uses all available local data to train the model in each iteration 

We can obtain 𝜃𝑠𝑒𝑟𝑣𝑒𝑟
∗  with 𝜃1

∗, 𝜃2
∗, … , 𝜃𝑘

∗ after several iterations
8

Central server in a Cloud

Node 1                               Node 2                   …                     Node k

𝜃𝑠𝑒𝑟𝑣𝑒𝑟 = (𝜃1 + 𝜃2 + ⋯ + 𝜃𝑘)/𝑘

𝜃1 𝜃2 𝜃𝑘

𝜃𝑠𝑒𝑟𝑣𝑒𝑟𝜃𝑠𝑒𝑟𝑣𝑒𝑟𝜃𝑠𝑒𝑟𝑣𝑒𝑟

… 
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Training Policy
𝐿𝑅𝐹𝐿𝑛 decreases the number of training instances in local nodes according to 

𝟏/𝒊 ratio where 𝑖 defines the iteration number

• Reduction: 0% the first iteration, 50% the second time, 66% the third iteration, and so on

• The subset of training instances is chosen randomly for each iteration
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Central server in a Cloud

Node 1                               Node 2                   …                     Node k

𝜃𝑠𝑒𝑟𝑣𝑒𝑟 = (𝜃1 + 𝜃2 + ⋯ + 𝜃𝑘)/𝑘

𝜃1 𝜃2 𝜃𝑘 𝜃𝑠𝑒𝑟𝑣𝑒𝑟𝜃𝑠𝑒𝑟𝑣𝑒𝑟𝜃𝑠𝑒𝑟𝑣𝑒𝑟

… 
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Training Policy
𝐿𝑅𝐹𝐿𝑛𝑤 updates the central node proportionally with the number of instances 

from the local models
• Then, reducing the number of instances on the training dataset implies a reduced update 

on 𝜃
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Central server in a Cloud

Node 1                                                            Node 2                            …                        Node k

𝜃𝑠𝑒𝑟𝑣𝑒𝑟 = (𝜃1 + 𝜃2 + ⋯ + 𝜃𝑘)/𝑘

𝜃1 = 𝜃1 − 𝛼∇𝜃1
𝐽 𝜃1

1

𝑖 𝜃2 = 𝜃2 − 𝛼∇𝜃2
𝐽 𝜃2

1

𝑖
𝜃𝑘 = 𝜃𝑘 − 𝛼∇𝜃𝑘

𝐽 𝜃𝑘

1

𝑖 𝜃𝑠𝑒𝑟𝑣𝑒𝑟𝜃𝑠𝑒𝑟𝑣𝑒𝑟𝜃𝑠𝑒𝑟𝑣𝑒𝑟

… 
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Training Policy
In 𝐿𝑅𝐹𝐿𝑒, the nodes use their data to train local LR models, and then these 

models are sent to the central server to obtain a better predictive model
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Central server in a Cloud

Node 1                               Node 2                   …                     Node k

𝑦 = ቐ 
1 𝑖𝑓 (ℎ𝜃1

∗ 𝑥 + ℎ𝜃2
∗ 𝑥 + ⋯ + ℎ𝜃𝑘

∗ 𝑥 )/𝑘 ≥ 𝜏 

0 𝑖𝑓 (ℎ𝜃1
∗ 𝑥 + ℎ𝜃2

∗ 𝑥 + ⋯ + ℎ𝜃𝑘
∗ 𝑥 )/𝑘 < 𝜏

𝜃1
∗ 𝜃2

∗

𝜃𝑘
∗

… 
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Training Policy
𝐿𝑅𝐹𝐿𝑒𝑛 the nodes use their data to train local LR models, and then these models 

are sent to the central server to obtain a better predictive model
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Central server in a Cloud

Node 1                                                          Node 2                         …                             Node k

𝜃1 = 𝜃1 − 𝛼∇𝜃1
𝐽 𝜃1

1

𝑖
𝜃2 = 𝜃2 − 𝛼∇𝜃2

𝐽 𝜃2

1

𝑖 𝜃𝑘 = 𝜃𝑘 − 𝛼∇𝜃𝑘
𝐽 𝜃𝑘

1

𝑖

… 

𝑦 = ቐ 
1 𝑖𝑓 (ℎ𝜃1

∗ 𝑥 + ℎ𝜃2
∗ 𝑥 + ⋯ + ℎ𝜃𝑘

∗ 𝑥 )/𝑘 ≥ 𝜏 

0 𝑖𝑓 (ℎ𝜃1
∗ 𝑥 + ℎ𝜃2

∗ 𝑥 + ⋯ + ℎ𝜃𝑘
∗ 𝑥 )/𝑘 < 𝜏



Privacy-Preserving Logistic Regression for Federated Learning Environments with a Policy to Reduce the Training Time

Experimental Evaluation
We compare the performance of 𝐿𝑅, 𝐿𝑅𝐹𝐿 , 𝐿𝑅𝐹𝐿𝑛, 𝐿𝑅𝐹𝐿𝑛𝑤 , 𝐿𝑅𝐹𝐿𝑒  , and 𝐿𝑅𝐹𝐿𝑒𝑛 

considering their accuracy (𝐴) and speedup

• Horizontal FL system 

• Constant number of nodes

• Federated Averaging 

Six standard datasets widely used in the literature

• Min-Max normalization

• Simple Split technique

Initial configuration of LR

• 10 learning rates (α)

• 10 values of iterations (𝑛𝐼𝑡𝑒𝑟)

• 30 initial solutions (𝜃)
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Dataset Features
Instances

Total (N) n-Training n-Testing

Low Birth Weight Study (Lbw) 9 189 151 38

Myocardial Infarction (Mi) 9 1,253 1,002 251

National Health and Nutrition Examination (Nhanes3) 15 15,649 12,519 3,130

Prostate Cancer Study (Pcs) 9 379 303 76

Indian’s diabetes (Pima) 8 768 614 154

Umaru Impact Study (Uis) 8 575 460 115

Table 2. Characteristics and size of the datasets
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Dataset 𝑳𝑹 𝑳𝑹𝑭𝑳 𝑳𝑹𝑭𝑳𝒏 𝑳𝑹𝑭𝑳𝒏𝒘 𝑳𝑹𝑭𝑳𝒆 𝑳𝑹𝑭𝑳𝒆𝒏 𝒅𝒊𝒇𝑨(𝑳𝑹𝑭𝑳𝒏) 𝒅𝒊𝒇𝑨(𝑳𝑹𝑭𝑳𝒏𝒘) 𝒅𝒊𝒇𝑨(𝑳𝑹𝑭𝑳𝒆) 𝒅𝒊𝒇𝑨(𝑳𝑹𝑭𝑳𝒆𝒏) Nodes

L
b

w
0.6965 0.6965

0.6833 0.6965 0.6965 0.6842 1.32 0.0 0.0 1.23 2

0.6877 0.6965 0.6965 0.6965 0.88 0.0 0.0 0.0 3

0.6491 0.6965 0.6965 0.6684 4.74 0.0 0.0 2.81 4

0.6518 0.6965 0.6965 0.6211 4.47 0.0 0.0 7.54 5

0.6684 0.6965 0.6965 0.6544 2.81 0.0 0.0 4.21 6

M
i

0.9053 0.9057

0.8965 0.7849 0.9046 0.8954 0.92 12.08 0.11 1.04 2

0.8938 0.7851 0.9042 0.8918 1.20 12.06 0.15 1.39 3

0.8960 0.7858 0.9042 0.8926 0.97 11.99 0.15 1.31 4

0.8908 0.7839 0.9028 0.8956 1.49 12.18 0.29 1.01 5

0.8963 0.7851 0.9023 0.8919 0.94 12.06 0.35 1.38 6

N
h

a
n

es
3

0.7916 0.7915

0.7915 0.7914 0.7915 0.7915 0.0 0.01 0.0 0.0 2

0.7914 0.7915 0.7915 0.7914 0.01 0.0 0.0 0.01 3

0.7915 0.7915 0.7915 0.7915 0.0 0.0 0.0 0.0 4

0.7916 0.7915 0.7915 0.7916 0.0 0.01 0.0 -0.01 5

0.7915 0.7915 0.7915 0.7915 0.0 0.01 0.0 0.0 6

P
cs 0.6667

0.6658
0.6246 0.6237 0.6654 0.6211 4.12 4.21 0.04 4.47 2

0.5908 0.6263 0.6654 0.5829 7.50 3.95 0.04 8.29 3

0.6654
0.5728 0.6232 0.6636 0.5776 9.25 4.21 0.18 8.77 4

0.5917 0.6189 0.6658 0.5618 7.37 4.65 -0.04 10.35 5

0.6658 0.6114 0.6215 0.6654 0.6228 5.44 4.43 0.04 4.30 6

P
im

a

0.6543 0.6537

0.6476 0.3463 0.6537 0.6474 0.61 30.74 0.0 0.63 2

0.6543 0.3506 0.6537 0.6543 -0.06 30.30 0.0 -0.06 3

0.6548 0.3500 0.6537 0.6545 -0.11 30.37 0.0 -0.09 4

0.6535 0.3461 0.6537 0.6535 0.02 30.76 0.0 0.02 5

0.6545 0.3496 0.6537 0.6543 -0.09 30.41 0.0 -0.06 6

U
is 0.7365 0.7365

0.7365 0.7365 0.7365 0.7365 0.0 0.0 0.0 0.0 2

0.7365 0.7365 0.7365 0.7365 0.0 0.0 0.0 0.0 3

0.7365 0.7365 0.7365 0.7365 0.0 0.0 0.0 0.0 4

0.7365 0.7365 0.7365 0.7365 0.0 0.0 0.0 0.0 5

0.7365 0.7365 0.7365 0.7365 0.0 0.0 0.0 0.0 6

Table 3. Average accuracy after 30 executions with the best LR configuration for different FL environment configurations
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Table 4. Speedup of FL environments with respect to LR  for all the datasets

Dataset 𝑳𝑹𝑭𝑳 𝑳𝑹𝑭𝑳𝒏 𝑳𝑹𝑭𝑳𝒏𝒘 𝑳𝑹𝑭𝑳𝒆 𝑳𝑹𝑭𝑳𝒆𝒏 Nodes Dataset 𝑳𝑹𝑭𝑳 𝑳𝑹𝑭𝑳𝒏 𝑳𝑹𝑭𝑳𝒏𝒘 𝑳𝑹𝑭𝑳𝒆 𝑳𝑹𝑭𝑳𝒆𝒏 Nodes

Lbw

0.91 0.91 0.92 1.20 0.99 2

Pcs

1.00 1.05 1.08 1.13 1.14 2

0.94 0.93 0.94 1.24 1.01 3 1.09 1.09 1.10 1.38 1.16 3

0.96 0.93 0.94 1.28 1.00 4 1.13 1.08 1.10 1.43 1.16 4

0.96 0.94 0.96 1.28 1.01 5 1.14 1.09 1.11 1.47 1.20 5

0.98 0.95 0.96 1.31 1.01 6 1.15 1.10 1.12 1.46 1.21 6

Mi

2.04 2.46 2.45 2.44 3.24 2

Pima

1.04 1.07 1.08 1.32 1.44 2

2.40 2.56 2.58 2.85 3.36 3 1.22 1.13 1.11 1.49 1.44 3

2.54 2.61 2.62 3.15 3.50 4 1.28 1.14 1.14 1.59 1.50 4

2.83 2.63 2.66 3.50 3.55 5 1.38 1.14 1.13 1.77 1.52 5

2.95 2.66 2.66 3.60 3.54 6 1.41 1.16 1.14 1.83 1.53 6

Nhanes3

1.28 2.51 2.54 1.74 4.87 2

Uis

1.08 1.00 1.00 1.33 1.32 2

1.25 2.85 2.91 2.31 5.97 3 1.17 1.01 1.02 1.45 1.36 3

1.48 3.09 3.14 2.83 6.69 4 1.29 1.03 1.04 1.63 1.37 4

1.69 3.29 3.30 3.12 7.15 5 1.32 1.03 1.03 1.67 1.38 5

1.87 3.42 3.45 3.40 7.56 6 1.34 1.04 1.04 1.72 1.38 6

The speedup measures consider the worst time of all nodes in the FL environment 

per iteration
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Fig 3. Normalized accuracy and time for all the FL models, datasets, and node configuration

The normalized values of accuracy and time
• 𝐿𝑅𝐹𝐿 provides the maximum execution time and no reduction in accuracy

• 𝐿𝑅𝐹𝐿𝑒  reduces the accuracy very little with respect to the worst strategy and 

provides an acceleration of 50% with respect to the maximum time reduction

• 𝐿𝑅𝐹𝐿𝑒𝑛 has the lowest execution time and an accuracy reduction of about 25%
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Encrypt Average Decrypt

Lbw 0.02409 0.00845 0.00916

Mi 0.02415 0.00838 0.00930

Nhanes3 0.03171 0.01085 0.01230

Pcs 0.02415 0.00796 0.00959

Pima 0.02469 0.00839 0.00937

Uis 0.02612 0.00906 0.00986

Table 5. Average time of HE operations (sec)

We also present the time to encrypt, decrypt, and calculate the aggregation of the 

ciphertexts with the values 𝜃𝑖 and 𝜃𝑠𝑒𝑟𝑣𝑒𝑟

• CKKS scheme with a security level of 128 bits, a polynomial modulo degree at 

most 213−1, and a moduli chain equal to {31, 26, 26, 26, 26, 26, 26, 31}[14]
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Conclusions

We analyze the latest advances in privacy-preserving LR solutions for processing 
confidential data using FL and HE

We present the characteristics of the most recent approaches in the field: 
algorithms, evaluation metrics, used datasets, implementation characteristics, 
etc.

We proposed one policy to reduce the training time of the federated model and 
conduct a comprehensive simulation analysis on the six datasets from medicine 
(diabetes, cancer, drugs, etc.) and genomics

The results show that the proposed policies can reduce the training time with a 
slight reduction in the final accuracy of the model
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