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Motivation

Federated Learning (FL) and Homomorphic Encryption (HE) are two main
directions to provide security and privacy preservation by addressing

vulnerabilities 1n data processing

Central server in a Cloud
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Fig 1. FL system with a central node in a

cloud environment and three nodes
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Fig 2. Cloud environment with HE can protect the entire

data lifecycle (transmission, storage, and processing)
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[Logistic Regression (LR

Logistic Regression (LR) is a statistical method for analyzing information where:

« A dataset X € R? and their labels Y € {0,1} are used to model a binary dependent
variable

* The prediction of a binary outcome considers the logistic function

The mference of LR considers the hypothesis hg (x(i)) = g(GTx(i)) where

- Logistic function: g(z) = —

1+e™2
e Weights: 87 = [0,,0, ... ,04]" YES@ N®
o Data: xW = [1,x,D,x,D, .. x;,P]7

The training phase of LR focuses on finding 0, the values of 0 that minimizes
the number of errors 1n the prediction
* 07" 1s used to estimate the binary classification of new data

Privacy-Preserving Logistic Regression for Federated Learning Environments with a Policy to Reduce the Training Time
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For x' = [1, x4, ..., x4] € R4 is possible to guess its binary value y’ € {0,1} by
r 1 lf hg*(xl) > T
TV 0 ifhe(x) <t

* T defines a variable threshold in 0 < T <1, typically with a value equal to 0.5

Gradient Descent (GD) is the optimization process to find 6" according to the
partial derivate of the cost function J(8), represented by Vg /(6)

Algorithm 1. Batch Gradient Descent
Input: X, Y, 0, a, and niter
Output: 8” (the best 9)

1 Fori « 1 to niter
2 0« 0—axVy](6,X,Y)
3 Return 6
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Related Work

There are several limitations with respect to the required compute availability
and privacy of the models

Several studies have proposed innovations and new approaches to overcome the
disadvantages of LR with FL and HE

Table 1. Main characteristics of FL and HE approaches for privacy-preserving LR in the literature

HE FL Name Metric Dataset Ref
- * VFLR Accuracy (A), Area under the ROC Curve (AUC) Pima, BCWD, BDM [1]
- * SecureLR Time MNIST [2]
- * VANE Mean Absolute Error (MAE) BCD, Diabetes dataset (DD), UCID [3]
- * VPPLR Precision (P), Recall (R) DD, WIBC, DD, ACAD [4]
* - - A MNIST, notMNIST, CIFAR-10 [5]
* - - AUC 1iDASH (Genomic), financial [6]
* - Modified GWAS p-values, Fl-score (F1) iDASH [7]
* - - A, AUC, K-S values Korea Credit Bureau (KCB), MNIST [8]
* - - A, AUC 1iDASH, Lbw, Mi, Nhanes3, Pcs, Uis [9]
* - N-LHAE Overhead Not described [10]
* - P20OLR, P2VCLR, CECLLR A, AUC, F1,P,R Mi, Nhanes3, Uis [11-13]
* - - A Digits (scikit-learn library) [14]
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Traininge Polic

We introduce a new training policy for FL that progressively reduces the amount
of training data for each iteration

* This reduction allows to perform the learning process faster, effectively reducing the
training time without significant accuracy degradation

Training Policies:
1. FL Logistic Regression with reduction policy (LRg;,)
2. FL Logistic Regression with reduction policy and weights (LRp; )
3. FL ensemble Logistic Regression (LRg;,)

TIT !
SN QN

4. FL ensemble Logistic Regression with reduction policy (LR} er)

Privacy-Preserving Logistic Regression for Federated Learning Environments with a Policy to Reduce the Training Time



Coldiste | National
Naisidnta= | College
hEireann | Ireland

Traininge Polic

FL Logistic Regression (LRg;)
* Datasets are evenly distributed among the system nodes

 Each local node uses all available local data to train the model in each iteration
Central server in a Cloud
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We can obtain 5., With 87, 85, ..., ) after several iterations
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Traininge Polic

LRp;, decreases the number of training instances 1n local nodes according to
1/i ratio where i defines the iteration number

* Reduction: 0% the first iteration, 50% the second time, 66% the third iteration, and so on

* The subset of training instances 1s chosen randomly for each iteration

Central server in a Cloud
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Traininge Polic

LRr;,,, updates the central node proportionally with the number of instances
from the local models

* Then, reducing the number of instances on the training dataset implies a reduced update

on 6
Central server in a Cloud
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In LRp;,, the nodes use their data to train local LR models, and then these
models are sent to the central server to obtain a better predictive model

1 if (th(X) + hg;(X) + e+ hgl’;(X))/k >T
Y71 0 if (hg:(0) + hgs () + ++ + hg: () /k <t

Central server in a Cloud
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LRy ., the nodes use their data to train local LR models, and then these models
are sent to the central server to obtain a better predictive model

B 1 if (th(X) + hg;(X) + -+ hg;;(X))/k =T
7)1 0 if (hg:(0) + Rz () + -+ hg: (0) /K <t

Central server in a Cloud

Node 1 Node 2
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Experimental Evaluation

We compare the performance of LR, LRr;, LRr;., LRrjyw » LRp1 e, and LRgp oy
considering their accuracy (A) and speedup
* Horizontal FL system
* Constant number of nodes

* Federated Averaging

Six standard datasets widely used 1n the literature
* Min-Max normalization

® Simple Sp]it technique Table 2. Characteristics and size of the datasets
.. . . Inst
Initial configuration of LR Dataset Features n'}sr:;fﬁz Testing
° . Low Birth Weight Study (Lbw) 9 189 151 38
10 learnlng rates ((X) Myocardial Infarction (Mi) 9 1,253 1,002 251

* 10 values of iterations (’n It eT') National Health and Nutrition Examination (Nhanes3) 15 15,649 12,519 3,130

L. . Prostate Cancer Study (Pcs) 9 379 303 76
* 30 1nitial solutions (0) Indian’s diabetes (Pima) 8 768 614 154
Umaru Impact Study (Uis) 8 575 460 115

13
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Experimental Evaluation

Table 3. Average accuracy after 30 executions with the best LR configuration for different FL environment configurations

Dataset LR LRg, LRpin LRpinw LRppe LRppen difs(LRpp) difs(LRpinw) difa(LRpre) dif J(LRpren,) Nodes

0.6833  0.6965 0.6965 0.6842 1.32 0.0 0.0 1.23 2

. 0.6877  0.6965 0.6965 0.6965 0.88 0.0 0.0 0.0 3
2 06965 0.6965 0.6491 0.6965 0.6965 0.6684 4.74 0.0 0.0 2.81 4
0.6518  0.6965 0.6965 0.6211 4.47 0.0 0.0 7.54 5

0.6684  0.6965  0.6965 0.6544 2.81 0.0 0.0 421 6

0.8965 0.7849  0.9046 0.8954 0.92 12.08 0.11 1.04 2

0.8938  0.7851  0.9042 0.8918 1.20 12.06 0.15 1.39 3

S 09053 09057 0.8960 0.7858 0.9042 0.8926 0.97 11.99 0.15 1.31 4
0.8908 0.7839  0.9028 0.8956 1.49 12.18 0.29 1.01 5

0.8963  0.7851 0.9023 0.8919 0.94 12.06 [0.35] 1.38 6

0.7915  0.7914  0.7915 0.7915 0.0 0.01 0.0 0.0 2

% 0.7914  0.7915 0.7915 0.7914 0.01 0.0 0.0 0.01 3
S 07916 0.7915 07915 0.7915 0.7915 0.7915 0.0 0.0 0.0 0.0 4
Z 0.7916  0.7915  0.7915 0.7916 0.0 0.01 0.0 -0.01 5
07915 0.7915  0.7915 0.7915 0.0 0.01 0.0 0.0 6

0665y 06246 0.6237  0.6654 0.6211 4.12 421 0.04 4.47 2

; 0.5908 0.6263  0.6654 0.5829 0 3.95 0.04 8.29 3
£ 06667 o, 05728 06232 06636 05776 0.25 421 0.18 8.77 4
' 0.5917  0.6189  0.6658 0.5618 7.37 4.65 -0.04 5

0.6658 _0.6114 0.6215 0.6654 0.6228 5.44 4.43 0.04 4.30 6

0.6476  0.3463  0.6537 0.6474 0.61 30.74 0.0 0.63 2

- 0.6543  0.3506  0.6537 0.6543 -0.06 30.30 0.0 -0.06 3
E 06543 06537 0.6548 03500 0.6537 0.6545 -0.11 30.37 0.0 -0.09 4
= 0.6535  0.3461  0.6537 0.6535 0.02 0.0 0.02 5
0.6545 _ 0.3496  0.6537 0.6543 -0.09 30.41 0.0 -0.06 6

0.7365  0.7365  0.7365 0.7365 0.0 0.0 0.0 0.0 2

0.7365  0.7365 0.7365 0.7365 0.0 0.0 0.0 0.0 3

207365 0.7365 0.7365 0.7365  0.7365 0.7365 0.0 0.0 0.0 0.0 4
0.7365  0.7365 0.7365 0.7365 0.0 0.0 0.0 0.0 5

VAW o W4 VAW o Wal4 VAW lo Va4 VAW o Wal4 FaWa¥ FaWa¥ FaWra¥ FaWra¥
V. 7TJUJ V. 7 JUJ V. 7 JUJ V. T JUJ V.U V.U V.U V.U

an

14
Privacy-Preserving Logistic Regression for Federated Learning Environments with a Policy to Reduce the Training Time



Experimental Evaluation

The speedup measures consider the worst time of all nodes in the FL environment
per 1teration

Table 4. Speedup of FL environments with respect to LR for all the datasets

Dataset LRp; LRpp,, LRpiaw LREppe LRE1en Nodes Dataset LRp; LRpp, LRpjnw LRpre LRpren, Nodes
091 091 092 1.20 099 2 1.00 1.05 1.08 1.13 1.14

094 093 094 124 1.01 1.09 1.09 1.10 1.38 1.16

Lbw 096 093 094 128 1.00 Pcs 1.13  1.08 1.10 1.43 1.16
096 094 096 128 1.0l 1.14 1.09 1.11 1.47 1.20

098 095 096 [1.31] 1.0l 1.15  1.10  1.12 1.46 1.21

204 246 245 244 324 1.04 1.07 1.08 1.32 1.44

240 256 258 285 3.36 1.22  1.13 1.11 1.49 1.44

Mi 254 261 262 315 3.50 Pima 128 1.14 1.14 1.59 1.50
283 2,63 266 350 3.55 1.38 1.14 1.13 1.77 1.52

295 2,66 2.66 [3.60] 3.54 1.41 1.16 1.14 1.83 1.53

1.28 251 254 1.74 4.87 1.08 1.00 1.00 1.33 1.32

1.25 285 291 231 597 1.17 1.01 1.02 1.45 1.36

Nhanes3 1.48 3.09 3.14 283 6.69 Uis 1.29  1.03 1.04 1.63 1.37
1.69 329 330 3.12 7.15 1.32  1.03 1.03 1.67 1.38

1.87 342 345 340 [7.56 134 104 1.04 1.72 1.38

[\

AN DN B WY DN B W INDON DN B W
(@) NNV, IS VS I Ol o)WV, RN NVS BN \O ) (o) RV, I SRS
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Experimental Evaluation

The normalized values of accuracy and time
* LRg; provides the maximum execution time and no reduction in accuracy
* LRr;, reduces the accuracy very little with respect to the worst strategy and
provides an acceleration of 50% with respect to the maximum time reduction
* LRy; ., has the lowest execution time and an accuracy reduction of about 25%

1.1
1 @

09 | T~
0.8 e °
0.7

0.6 ® FL ® FLn
0.5

0.4 ® FLnw © FlLe
0.3
0.2
0.1
0 o

0 01 02 03 04 05 06 07 08 09 1 1.1
Accuracy reduction

Fig 3. Normalized accuracy and time for all the FL models, datasets, and node configuration

Time

® Flen
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We also present the time to encrypt, decrypt, and calculate the aggregation of the

ciphertexts with the values 6; and Oggrpyer

* CKKS scheme with a security level of 128 bits, a polynomial modulo degree at
most 213—1, and a moduli chain equal to {31, 26, 26, 26, 26, 26, 26, 31}[14]

Table 5. Average time of HE operations (sec)

Encrypt Average Decrypt

Lbw 0.02409 0.00845 0.00916
Mi 0.02415 0.00838 0.00930
Nhanes3  0.03171 0.01085 0.01230
Pcs 0.02415 0.00796 0.00959
Pima 0.02469 0.00839 0.00937
Uis 0.02612 0.00906 0.00986

Privacy-Preserving Logistic Regression for Federated Learning Environments with a Policy to Reduce the Training Time
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We analyze the latest advances in privacy-preserving LR solutions for processing
confidential data using FL and HE

We present the characteristics of the most recent approaches in the field:
algorithms, evaluation metrics, used datasets, implementation characteristics,
etc.

We proposed one policy to reduce the training time of the federated model and
conduct a comprehensive simulation analysis on the six datasets from medicine
(diabetes, cancer, drugs, etc.) and genomics

The results show that the proposed policies can reduce the training time with a
slight reduction 1n the final accuracy of the model

18
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